## Schedule of The First Half of The Course (Hasegawa)

Lecture Slides (PDF files)

http://www-surface.phys.s.u-tokyo.ac.jp/KougiOHP/

- 1. Nanoscience and Surface Physics ナノサイエンスと表面物理 Nanoscience in Nobel Prize
- Atomic Arrangements at Surfaces 表面原子配列構造 Scanning Tunneling Microscopy, Electron Diffraction 走査トンネル顕微鏡、電子回折
- 3. Surface Electronic States 表面電子状態
  - Surface states 表面状態、 Rashba Effect ラシュバ効果 Topological Surface States トポロジカル表面状態、 Band Bending バンド湾曲
- 4. Surface Electronic Transport 表面電気伝導 Space-Charge-Layer Transport and Surface-State Transport 空間電荷層伝導と表面状態伝導

2D Materials 2次元物質

Atomic-Layer Superconductivity 原子層超伝導



- 物質中の電子を外に取り出すのに必要なエネルギーの最小値
  The minimum energy necessary for taking an electron out of the material
- 物質中の最高占有エネルギー準位にある電子を真空準位に上げるのに必要なエネルギー The energy necessary to excite an electron at the highest occupied level to the vacuum level

「物質の外」:無限遠ではなく、物質の表面の直上(表面から鏡像力の影響を無視できる程度の距離 ~1 µm)の真空中 Outside of the Material = a position away from the surface (~1 µm) at which the image force is ignored, not a position at infinite.

# 表面項 Surface Term

電子の滲みだしと表面電気二重層 Spill out of electrons & Surface Electric Dipole Layer



## **バルク項** (交換相関エネルギーV<sub>XC</sub>)-(運動エネルギー) Bulk Term (Exchange-Correlation Energy V<sub>XC</sub>)-(Kinetic Energy)

それぞれの電子の周りには電子密度の低い領域(正電荷を帯びた領域)が存在 ⇒真空中の 電子に比べて安定化(エネルギーが下がる V<sub>xC</sub>)

Low-el-density area (positively charged area) around each electron  $\Rightarrow$  Each electron is more stabilized than that in vacuum (Energy lowering  $V_{xc}$ )

#### クーロン孔,相関ホール (Correlation Hole)

電子間のクーロン反発によって他の電子を遠ざけている (相関相互作用) (Correlation Inter. due to Coulomb repulsion)

フェルミ孔, 交換ホール (Exchange Hole) 同じスピンを持つ電子どうしは, パウリの排他原理による 交換相互作用による反発がはたらき他の電子を遠ざけている (Exchange Inter. due to Paul's Exclusion Principle)



ρ:電子の数密度(個/cm<sup>3</sup>) Number density of electrons (1/cm<sup>3</sup>)

 $\frac{4\pi}{3}R_{S}^{3}:1個の電子が占める体積(cm<sup>3</sup>) Volume occupied by an electron (cm<sup>3</sup>)$  $<math display="block">\rho = \frac{1}{\left(\frac{4\pi}{3}R_{S}^{3}\right)} \Rightarrow R_{S} = \left(\frac{3}{4\pi\rho}\right)^{\frac{1}{3}} \stackrel{\# 次 \pi \ell}{\Rightarrow} r_{S} = \frac{\left(\frac{3}{4\pi\rho}\right)^{1/3}}{a_{B}:\text{Bohr Radium (0.52 Å)}}$ 



金属単結晶の仕事関数 Work Function of Metal Single Crystal

|                           |             |       | 面方位   | Face Orientation |
|---------------------------|-------------|-------|-------|------------------|
| 結晶構造<br>Crystal Structure | 金属<br>Metal | (100) | (110) | (111)            |
| bcc                       | K           | 1.65  | 1.78  | 1.85             |
|                           | Fe          | 4.67  | 5.05  | 4.81             |
|                           | Mo          | 4.53  | 4.95  | 4.55             |
| fcc                       | Al          | 4.20  | 4.28  | 4.24             |
|                           | Ni          | 5.22  | 5.04  | 5.35             |
|                           | Cu          | 4.59  | 4.48  | 4.94             |
|                           | Ag          | 4.64  | 4.52  | 4.74             |
|                           | Ir          | 5.67  | 5.42  | 5.76             |
|                           | Au          | 5.22  | 5.20  | 5.26             |

a) 単位は eV とした. In unit of eV

表面項が違う:原子数の表面密度が大きいほど表面二重電気層が強くなり、仕事関数が大きくなる。 Different Surface Term: As larger the atom density at surface is, stronger the surf. Electric Dipole Layer is. ⇒ larger Work Function fcc 金属: (111)>(100)>(110)

電子を物質から取り出して無限遠にもって いくのに必要なエネルギーは、取り出す結晶面によらずに同じ。

#### From Energy Levels to Band Formation



# Various Surface States



# Various Surface States





#### Nearly Free Electron Approximation



Figure 2.2. Band structure of a one-dimensional crystal in the (a) extended, (b) reduced, and (c) repeated zone schemes, and (d) the density of states as a function of energy. The thick lines show  $\varepsilon(k)$  in a weak periodic potential, with bands labelled by *n*, while the thin parabola is  $\varepsilon_0(k)$  for free electrons. The grey lines are periodic repeats.

## **ARPES (Angle-Resolved Photoemission Spectroscopy)**



#### **ARPES Apparatus & Spectra**







### **Mono-Layer Ag on Silicon :** Si (111)- $\sqrt{3} \times \sqrt{3}$ -Ag Surface



Spectra from Si(111) Surfaces





Surface-State Bands & Surface Space-Charge Layer

Theory: Surface Bands of Monolayer Ag on Si(111)

Surface states are in the bulk band gap.



 $E = \frac{p^2}{2m^*} = \frac{\hbar^2 k^2}{2m^*}$ 

Free-electron-like state

H. Aizawa and M. Tsukada, Surf. Sci. 429 (1999) L509











# 電子定在波 Electron Standing Wave



#### Surface-State Bands of Si(111)-4 × 1-In Surface



# Peierls Transition —(Quasi-) 1D Metal



# Metal-Insulator Transition at Si(111)-4×1-In Surface



H.W.Yeom et al., PRL 82, 4898 (1999)

#### Atom Displacements (Lattice Distortion) with CDW



W. G. Schmidt, et al., Phys. Status Solidi B 249, No. 2, 343-359 (2012)

反射高速電子回折(RHEED)



High-Temp Phase

RT



Low Temp Phase

100 K

Electrical Resistance of Si(111)-4 × 1-In Surface





A. Bostwick, et al., Nature Physics 3, 36 (2007).



# The electron energy is determined by its momentum (and spin).



## Difference in Energy between Spin $\uparrow$ and Spin $\downarrow$



### Surface States of Au(111)—Spin split due to Rashba effect—



# Band Dispersion of 20 Atomic Layer Bi(111) slab (1st Principles Calculation)



## ARPES of Bi(111) Ultrathin films —QWS and SS—



# **Topological Surface States**

Bi<sub>1-x</sub>Sb<sub>x</sub>, Bi<sub>2</sub>Te<sub>3</sub>, Bi<sub>2</sub>Se<sub>3</sub>,

Analogue of Edge States in Quantum Hall States (2DEG) ⇒ Extension to 3D Materials ∉ Strong SO Interaction produces effective B.



# **Electronic States of Bi<sub>2</sub>Se<sub>3</sub> (Theory)**



H. Zhang, et al., Nature Physics (May 2009)



## Chiral Dirac Cone of Topological Insulators and Current-Induced Spin Polarization



# Band Bending of Bulk States Near Surface



Surface States & Surface-Space-Charge Layer (Band bending)



## Three Channels for Electrical Conduction near Surface



Origins of Band Bending (Origins of SSCL)

