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A method to improve the resolution of four-point-probe measurements of two-dimensional~2D! and
quasi-2D systems is presented. By mapping the conductance on a dense grid around a target area
and postprocessing the data, the resolution can be improved by a factor of approximately 50 to better
than 1/15 of the four-point-probe electrode spacing. The real conductance sheet is simulated by a
grid of discrete resistances, which is optimized by means of a standard optimization algorithm, until
the simulated voltage-to-current ratios converges with the measurement. The method has been tested
against simulated data as well as real measurements and is found to successfully deconvolute the
four-point-probe measurements. In conjunction with a newly developed scanning four-point probe
with electrode spacing of 1.1mm, the method can resolve the conductivity with submicron
resolution. © 2003 American Institute of Physics.@DOI: 10.1063/1.1589161#
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I. INTRODUCTION

With the emergence of nanostructured materials suc
conducting polymers1 and the continuing decrease of featu
sizes of electronic circuitry, investigation of the conducti
properties on a nano/submicron scale has become an im
tant issue. For many decades, the four-point probe has
used to measure surface and bulk electrical conductivity
various materials. The near suppression of contact resist
makes interpretation of the measurements consider
easier than, for instance, spreading resistance and two-p
measurements. The difficulty in bringing four individu
electrodes close together, and the fact that the spatial res
tion of the method is limited by the area in which the curre
flows through the sample, has until recently made the fo
point measurement technique unsuitable for micro- a
nanometer-scale investigations. The four-point probe is b
suited for detection of spatial conductivity variations that a
negligible over several times the electrode spacing. Thi
true for both linear and Hall electrode geometries.

Methods relying on a single moving tip, such as t
scanning spreading resistance method,2,3 and nanopotentio-
metry allow the electronic properties to be investigated w
nanoscale resolution. The scanning spreading resist
measures the contact resistance between the probe an
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sample. The outcome is however a complex combination
several factors including the contact area, Schottky bar
surface states, contact pressure as well as the spreadin
sistance itself. The scanning potentiometer relies on the
rent being homogeneously distributed over the sample.
find the absolute local conductivity, the sample must be
mogeneous on a macroscopic scale, as well as on an i
mediate scale in the vicinity of the investigated area. Due
the typically large distance between the electrodes, for th
two systems, a large fraction of the current runs in the b
of the sample. Therefore, both the scanning spreading re
tance and the scanning potentiometer are less sensitiv
surface phenomena than the microfour-point probe.4 Meth-
ods like scanning tunneling microscopy~STM! and scanning
tunneling spectroscopy allow the electronic structure to
measured with atomic resolution, but do not directly meas
the conductivity either.

Several groups have developed four-tip STMs that c
perform four-point-probe measurements with electrode sp
ings down to 1mm.5 The complexity of these instrument
and the difficulty in aligning the four tips individually has s
far prevented mapping of the conductivity. Recently, line
microfour-point probes with electrode spacing down to 1
mm were developed on a single silicon chip.6 The microfour-
point probes have been used to map the conductivity on
tems such as conductive polymers and surface recons
tions on silicon.4,7,8 These systems exhibit structures on
1 © 2003 American Institute of Physics
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3702 Rev. Sci. Instrum., Vol. 74, No. 8, August 2003 Hansen et al.
nanoscale, which can be expected to influence the con
tivity. To reduce further the electrode spacing, nonstand
fabrication techniques have to be employed.9

In this article, we present an altogether different route
obtain higher spatial resolution in four-point-probe measu
ments. If multiple four-point measurements are performed
a dense grid over the sample, then by numerical deconv
tion of the data, a dramatic improvement of the resolut
can be obtained. We demonstrate scanning measurem
with a resolution of 1/15 of the electrode spacing, which
an improvement of nearly two orders of magnitude, as
resolution normally quoted for a four-point probe is rough
three times the electrode spacings.

II. METHODS AND RESULTS

A. Four-point resistivity at conductive sheets

The four-point probe consists of four electrodes arran
in an equidistant linear array. In the standard configuratio
current I is fed through the sample via the two outer ele
trodes. This generates a voltage dropV across the two inne
electrodes, which is measured by a high impedance volt
ter. For a homogeneous two-dimensional~2D! conductive
sheet with the sheet conductivityGh , the measured voltage
to-current ratio is given by10

I

V
5

p

ln 2
Gh . ~1!

Analytical relations can only be found for homogeneo
samples with simple geometries.10,11 For inhomogeneous
samples, the relation between the voltage-to-current ratio
the local conductivity becomes highly complex. In the fo
lowing, we describe a numerical method for simulating t
result of a four-point measurement for any arbitrarily varyi
2D conducting sheet.

The simulation is then used to calculate the object
function for an optimization routine, that performs a fit of th
simulated data to the measured data, to give a map of the
resistance.

Throughout this article, we will use the terms four-poi
resistivity and four-point conductivity meaning the resistiv
or conductivity calculated from Eq.~1! using locally mea-
sured voltage-to-current ratios.

B. Convolution effect

To give an impression of the convolution effect of th
four-point measurement, Fig. 1 shows a schematic of a fo
point-probe scanning over a surface with a line defect
lower conductivity. The solid curve in Fig. 1 represents t
real resistivity of the sample along the scanning line, wh
the dotted line represents the measured four-point resisti
As can be seen, the feature in the four-point resistivity ma
highly convoluted and appears to be much wider than
real feature. Also the conductivity level of the feature in t
four-point resistivity map is not easily related to the condu
tivity of the real feature.
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C. Simulation of four-point resistivity maps

We want to simulate the cases of a four-point probe
ing scanned over a surface in equidistant steps in~a! the
direction parallel to the probe orientation and~b! the direc-
tion perpendicular to the probe orientation.

The electrostatic potential in the sheet is given by
conservation equation

¹•@s~x,y!¹u~x,y!#5A@d~r2r1!2d~r2r2!#, ~2!

wherer1 and r2 are positions of the current source and t
current drain, respectively. The current fed to the sample
denotedA. The local potential and sheet conductivity a
denotedu(x,y) and s(x,y), respectively. Equation~2! is
discretized using the five-point finite differenc
formulation12

Gi 21/2,jVi 21,j1Gi 11/2,jVi 11,j1Gi , j 21/2Vi , j 21

1Gi , j 11/2Vi , j 112~Gi 21/2,j1Gi 11/2,j

1Gi , j 21/21Gi , j 11/2!Vi , j5I i , j , ~3!

whereI i , j is the total current fed in to grid blocki , j :

I i , j5AE
Dxi , j

dxE
Dyi , j

dy@d~r2r1!2d~r2r2!#

5A~d i 2 i 1 , j 2 j 1
2d i 2 i 2 , j 2 j 2

!, ~4!

andVi , j is the potential at grid point (i , j )5(xi ,yj ), see Fig.
2. The coefficientGi 11/2,j describes the conductance betwe
grid point (i , j ) and grid point (i 11,j ) given by the block
centered method13,14

Gi 11/2,j52
s i , js i 11,jDyj

s i 11,jDxi1s i , jDxi 11
, ~5!

FIG. 1. Principle of scanning four-point measurement. The four-point pr
is scanned in steps over the surface and for each step the voltage–c
ratio is measured. The dark patch on the sheet indicates an area of incr
resistivity. In the plot below, the solid line shows the resistivity and t
dotted line the resulting voltage–current ratio as the probe is scanned
the surface.
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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where s i , j is the average sheet conductivity in grid blo
( i , j ) andDxi andDyj are the step sizes as shown in Fig.
Gi , j 11/2 is defined equivalently.d i , j is the discrete delta
function.15 In the area where the scanning is being p
formed, the grid points must coincide with the position of t
electrode. Thus, the grid spacing must be an integer frac
of the electrode spacing. The electrode spacing is given
s5nxDx01nyDy0 where Dx0 and Dy0 are the minimum
grid spacings in thex andy directions, respectively.

The resulting set of equations can be written in mat
form

SVk5I k, ~6!

where Vk and I k are column vectors containing theNxNy

values ofVi , j andI i , j , respectively, and the indexk indicates
the kth probe position.Nx and Ny is the number of grid
points in thex and y directions, respectively. The node
admittance matrixS16 is given by

S5AxGxAx
T1AyGyAy

T , ~7!

where Gx is a diagonal matrix containing theNx(Ny21)
values ofGi 11/2,j andGy contains the (Nx21)Ny values of
Gi , j 11/2. Ax andAy are the reduced incidence matrices16 for
the conductors directed along thex and they axes, respec-
tively. The incidence matrix relates a conductor with tw
grid points. If the conductance att15t( i 11/2,j ) connects
grid points,15,( i , j ) and,25,( i 11,j ) thena,1 ,t1

x 51 and

a,2 ,t1
x 521, wherea,,t

x is the element in row, and columnt

of Ax and t( i 11/2,j ) and ,( i , j ) cast the grid index into a
linear index.

The system of Eq.~6! then has to be solved for eac
probe positionk in the four-point scan. For each new curre
vector I k, a newVk is obtained. To extract the probe vol
ages, the potential vectorVk is multiplied with the vectordk:

Vp
k5~dk!TVk. ~8!

FIG. 2. Grid formation and model for four-point-probe simulation. The g
formation is the block centered formation. The small circles show the
points and the rectangles show grid blocks. The conductorsGi 11/2,j ,
Gi , j 11/2 , Gi 11,j 11/2 , andGi 11/2,j 11 show the conductor network equivalen
Downloaded 29 Jul 2003 to 133.11.199.16. Redistribution subject to A
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The vectordk contains only two nonzero elements so tha

~dk!TVk5Vi p1 , j p1

k 2Vi p2 , j p2

k , ~9!

where (i p1 , j p1) and (i p2 , j p2) are the grid point indices a
the position of the two inner electrode. The total system c
now be written as

SV5I , ~10a!

Vp5dT"V, ~10b!

where " designates the diagonal of the matrix product. T
columns ofV, I , andd contain the vectorsVk, I k, anddk,
respectively. The vectorVp now contains the probe voltage
for every probe position. The subscriptp indicates the probe
voltage difference as opposed to the node potentialsVi , j

k .
When applying Dirichlet boundary conditions, the matrixS
becomes a symmetric positive definite band matrix and
system can now efficiently be solved using the Choles
method.17 Due to the very large size of the right-hand side
Eq. ~10a!, indirect methods are generally not faster than
direct Cholesky method.

In order to bring the boundary as far away from the a
of interest, without excessively increasing the number of f
parameters, the grid spacing is gradually increased tow
the edge of the simulation grid.

D. Deconvolution of four-point resistivity
measurements

The aim of the deconvolution is to obtain the real co
ductivity of the sample from the measured data. Thus,
want to find the conductivity map that, through a simulati
of the four-point measurement, leads to the best possibl
to the measured data. This requirement is equivalent to m
mizing the objective function

E05(
k

~Vp
k2Vm

k !2, ~11!

with respect to the sheet conductivity map contained in
matrix s. The measured voltages are given inVm

k , while the
voltagesVp

k are obtained by simulation as described in t
previous section.

To efficiently optimize the system, we will need to kno
the gradient of the objective function and thereby the deri
tives of the probe voltages with respect to the sheet cond
tivities. By using the so-called transpose system metho18

we found that the dependence of the probe voltageVp with
respect to any parameterh influencingS can be written as

]Vp
k

]h
5~Ṽk!T

]S

]h
Vk. ~12!

The transpose system voltagesṼk are defined by

STṼk52dk or Ṽk52~S21!Tdk. ~13!

For S being symmetric, we can writeṼk5S21(2dk) and the
transposed system can be calculated together with the o
nary system as@Ṽ,V#5S21@2d,I #, where the notation

d

IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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@Ṽ,V# simply states that the columns ofṼ precede the col-
umns ofV in one common matrix. The derivative ofS with
respect toGi 11/2,j is18

]S

]Gi 11/2,j
5~e,( i , j )2e,( i 11,j )!~e,( i , j )2e,( i 11,j )!

T, ~14!

wheree, is a unit element vector, with the,th element being
1 and all others are zero.,( i , j ) is the linear index of the
node at (xi ,yj ). The derivative of the probe voltage for eac
conductor can then be written as

]Vp
k

]Gi 11/2,j
5~Ṽk!T~e,( i , j )2e,( i 11,j )!~e,( i , j )2e,( i 11,j )!V

k.

~15!

By the definition ofAx , it can be seen that this is equivale
to

]Vp
k

]Gx
5~~Ṽk!TAx!* ~Ax

TVk!, ~16!

where * multiplies each element of two matrices of equ
size, giving a new matrix of the same size. For the cond
tors in they direction, it becomes

]Vp
k

]Gy
5~~Ṽk!TAy!* ~Ay

TVk!. ~17!

Thus, we can write for the entire system

]Vp

]s
5~ṼTAx!* ~Ax

TV!
]Gx

]s
1~ṼTAy!* ~Ay

TV!
]Gy

]s
, ~18!

where]Gx /]s is the Jacobian for the collection of equatio
like Eq. ~5! and equivalently for]Gy /]s.

E. Suppression of false solutions

Now, in principle, we should be able to find the re
conductivity of the sheet by a standard optimization rout
with the objective function~11! and the Jacobian obtaine
from Eq.~18!. However, since the maximum number of co
strainsVm

k is (Nx23nx)(Ny23ny), and the number of free
parameters ins is NxNy , the system is underdetermine
This means that in principle an infinity of different solution
exist which in many cases leads to oscillatory solutions.

An efficient way of suppressing such artifacts, is to
troduce high-frequency penalty functions in the object
function. We use penalty functions given by

F,( i , j )
x 5 f f

s i , j2s i 11,j

s i , j1s i 11,j
~19!

and

F,( i , j )
y 5 f f

s i , j2s i , j 11

s i , j1s i , j 11
, ~20!

wheref f is a weight factor. The Jacobi matrices are given
Downloaded 29 Jul 2003 to 133.11.199.16. Redistribution subject to A
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]F,( i , j )
x

]sp,q
55

2 f f

s i 11,j

~s i , j1s i 11,j !
2 for p5 i and q5 j

22 f f

s i , j

~s i , j1s i 11,j !
2 for p5 i and q5 j 11

0 for all other values,
~21!

and equivalently forFy. The new objective function become

Eh5E01(
,

F,
y2

1F,
x2

. ~22!

This function is minimized with respect tos. A value of
0.1 for f f was found to give reasonable results for a wi
range of cases, and was chosen for all calculations in
work. The optimization routine used is a conjugated gradi
based routine as implemented inMATLAB .

We will consider two simple cases: A step function co
responding to two neighboring domains of different condu
tivity and a delta function, corresponding to a high resistiv
boundary separating two areas of similar resistivity. In bo
cases, we assume invariance in the direction perpendicul
the probe orientation.

A four-point measurement scan of the two domain ca
was calculated analytically. The two domains had sheet
sistivities of 1V and 10V, respectively, and the electrod
spacing wass54Dx0 . The result was deconvoluted for var
ous values off f . The probe orientation was perpendicular
the step edge and the simulation grid hadMx124552 by
M y112532 internal grid points, whereMx andM y are the
numbers of evaluation points for the analytical result. T
evaluation points were separated by a single grid point. T
resulting resistivities forf f50.1 are shown in Fig. 3~a!. The
outer ten rows and columns exhibit strong deviations fr
the correct result due to boundary effects and have been
moved from the graphs shown. Apart from in these outer
rows, the maximum error is approximately 15% for a
weight factor betweenf f50.01 and f f50.1. For these
weight factors, the step position is precisely established.

F. One-dimensional invariance

For systems being invariant in they direction, these re-
sults can be greatly improved by also imposing invaria
constrains for the deconvolution result. We then use o
data from a four-point scan along a line in thex direction and
the simulation is also done only for a single line. The co
ductivities are given by

s i , j5s i
y , ~23!

wheres i
y is the conductivity in each line along they direc-

tion and the Jacobian is given by

]Vp

]s i
y 5(

j 51

Ny ]Vp

]s i , j
, ~24!

where]Vp /]s i , j is given by Eq.~18! Due to the invariance
in the y direction, larger grid spacings in this direction ma
be used. The result of deconvoluting a conductivity step fr
1 V21 to 0.01V21 is shown in Fig. 3~b! for electrode spac-
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp



dge

a
o-
.

ns
ent
ible
re-
to
a-

es
y
ly
the
d-

g
ed to
e

s in

ves

ly-
em
y-
er,

d in
et in

an-

long

en-
hod
the
ure-

rid

ap

l-

ity

n-

3705Rev. Sci. Instrum., Vol. 74, No. 8, August 2003 Enhancement of four-point measurements
FIG. 3. ~a! Deconvolution of analytical result for a step-function resistiv
map. Low level: 1V, high level: 10V. The analytical four-point resistivity
~dashed–dotted! and the poorest (y54) deconvolution result~solid! is pro-
jected onto the backplane. The electrode spacing iss54Dx0 . ~b! Deconvo-
luted resistivity ~solid! of analytically calculated four-point resistivity
~dashed–dotted! with spacial invariance imposed in the direction perpe
dicular to probe orientation. Original resistivity has a step from 1V to 100
V at x528. Electrode spacings58Dx0 . ~c! As ~b! for a singleDx0 wide 10
V peak on a 1V background.~d! As ~a! but using all principal configuration
of the linear four-point probe and fors58Dx0 . ~e! As ~d! for a Dx0 wide
peak penetrating only half way into the sheet.
Downloaded 29 Jul 2003 to 133.11.199.16. Redistribution subject to A
ingss58Dx0 and penalty factorsf f50.1. The grid size is 21
Dy0 by 123Dx0 and we useDy05s. For penalty factors
from 0.01 to 0.1, the error is less than 10% and the step e
position is accurately reproduced.

Figure 3~c! shows the result of a similar calculation of
highly resistive boundary between two low resistivity d
mains. The errors are comparable to previous calculation

G. Multiple four-point-probe configurations

The accuracy can be improved without penalty functio
and any assumptions of invariance, by combining differ
voltage–current electrode configurations. Of the six poss
configurations, three is sufficient to give unambiguous
sults. The model for these simulations is straightforward
derive from the aforementioned model by expanding the m
trices I andd, to also include these other configurations.

We simulated four-point conductivity maps for the cas
of ~I! two neighboring domains with different conductivit
and ~II ! a sheet of homogeneous conductivity with a high
resistive barrier penetrating half the area. In both cases,
four-point-probe orientation is perpendicular to the boun
ary. Figures 3~d! and 3~e! show the results of deconvolutin
these maps. In both cases, the sharp features are retriev
within 10% of the original conductivity map, as shown in th
projections of the 2D data on the back plane of the graph
Fig. 3 ~marked with arrows!. The original resistivity curves
are marked with dashed lines, while the deconvoluted cur
are marked with full lines.

III. RESULTS

The deconvolution method has been applied to a po
mer system with artificially constructed defects. The syst
consists of a silicon sample with a 30 nm thick pol
thiophene film spun on top. Before spinning the polym
trenches of approximately 2mm width and approximate 2
mm depth were laser etched using the method describe
Ref. 19. These trenches are seen as dark lines in the ins
Fig. 4~a!.

A four-point measurement map was obtained by sc
ning a four-point probe, with an electrode spacing of 20mm,
over the sample in steps of 5mm by 5 mm. From these
measurements we have picked the result of a line scan a
the white arrow in the inset of Fig. 4~a!. Since the area can
be considered translational invariant in the direction perp
dicular to the probe orientation, we have used the met
described in Sec. II F. In order to have the fitting errors in
same order as the penalty function response, the meas
ment values were normalized by dividing with 105 V before
deconvolution. The simulation grid was 302 by 27. The g
spacingDyi of the simulation grid wasDy0520 mm for the
innermost 11 grid blocks, increasing gradually to 500mm at
the edges along thex axis. The grid spacingDxi in the inner
286 grid blocks wasDx055 mm increasing to 500mm at the
edge along they axis. The penalty factor,f f , was chosen to
be 0.1. The central area of the deconvoluted resistivity m
is shown in Fig. 4~a! ~solid line! along with the original
measurement~dashed line!. The values have been renorma
ized by multiplying with 105 V.
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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A high-density scan of such a trench is shown in t
inset of Fig. 4~b!. In this case, the step size was only 1.3mm.
Using a simulation grid of 425 by 27, the trench is resolv
as a sharp peak, just two grid spacings wide, as seen in
4~b!. This has to be compared with the width of the etch
trench of approximately 2mm.

From these results, we can calculate the boundary c
ductivity, by which is meant the total conductivity across t
boundary or defect. If we ignore the conductivity in the v
cinity of the boundary, its conductivity per unit length can
calculated from

gB5
1

(rs,iDxi
,

where the sum is over all the grid blocks that cover
boundary. The resistivity of the grid block isrs,i andDxi is
the size of the grid block normally equal toDx0 . For the two
polymer systems, the boundary conductivity becomes
31022 V21 m21 and 1.531022 V21 m21 for the low-
resolution ~left-hand side boundary! and high-resolution
maps, respectively. As these values are expected to be e

FIG. 4. ~a! Deconvolution of a four-point scan along the line indicated
the arrow in the insert. The dashed–dotted line shows the measured
point resistance, and the solid line shows the deconvoluted resistivity.
sample is prepared by laser etching trenches in silicon and subsequent
ning of a 30 nm thick conductive polymer. The splitting of the left-hand s
peak is attributed to short circuiting over the trench by the probe contact~b!
Deconvolution of a scan similar to the one in~a! but with smaller step
length. Again, the dashed–dotted line shows the measured four-point r
tance and the solid line shows the deconvoluted resistivity.
Downloaded 29 Jul 2003 to 133.11.199.16. Redistribution subject to A
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this can be taken as an indicator of the quality of the m
surement and the deconvolution in combination.

Finally, we have applied the method to measurements
a step bunched Si)3)-Ag surface. Four-point-probe mea
surements have been performed at various positions ac
the sample, in the direction perpendicular to the s
bunches, using a 8mm four-point probe at an angle of 45
with respect to the step bands. The changes in the volta
current ratio depend on both the conductivity and the po
tions of the step bunches relative to the electrodes in a n
trivial fashion, similar to the case of the conductive polym
film. The experiment is described in detail in Ref. 8.

Because of the limited number of measurement poin
the method was slightly modified for this particular case. T
measured value is shown as a dashed–dotted line in Fig
As seen in the scanning electron microscopy~SEM! micro-
graph insert the measurement area consists of terraces
step bands. By assuming the conductivity to be cons
within each of these areas, we can modify the method i
manner similar to the one-dimensional translational invari
case. Thus, we have

s i , j PAq
5sq

sb for q51, . . . ,m, ~25!

]Vp

]sq
sb5 (

i , j PAq

]Vp

]s i , j
, ~26!

wheresq
sb is the conductivity in areaAq and i , j PAq repre-

sents all grid blocks inside the areaAq , the number of areas
beingm, and the area index beingq. The measurement ca
be deconvoluted to give the result~solid line! shown in Fig.
5. The sheet resistivity of the terraces appear to be appr
mately 300V, which is approximately the same as measu
on a sample without step bunches. The resistivities of
step bunches appear to be much higher. The band A h
sheet resistivity around 2 kV while band B has a sheet resi

ur-
he
pin-

is-

FIG. 5. Deconvolution of four-point resistivity measurements on a st
bunched Si(111))3)-Ag. The dashed–dotted line shows the measu
four-point resistivities, and the solid line shows deconvoluted resistiv
Constant conductivity constraints are imposed on each area, i.e., step b
and terraces. The right-hand side most terrace is not sufficiently determ
due to lack of measurements in the area. A scanning electron micros
~SEM! pictures of a measurement on a similar sample is shown in the in
The white bands are step bunches while the dark gray bands are terra
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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tivity around 4 kV. This difference of a factor of 2 is easil
explained by variations in step density. Also the high res
tive step bunch is more narrow and thus is expected to h
higher step density to accommodate for approximately
same height difference. The increased resistance of the r
hand sidemost terrace, compared to the other terraces,
artifact due to a lack of measurements in the vicinity of t
area.

IV. DISCUSSION

We have developed a method for obtaining the real
sistivity map of 2D and quasi-2D systems, with a high
resolution than possible with a conventional four-point-pro
technique. This was verified with data derived from analy
cal expressions for two cases of inhomogeneous resist
landscapes. The original conductivity maps were retrie
with less than 10% error far away from transitions~domain
and grid boundaries!, and to within 15% near transitions.

For deconvolution of the measurement of the conduc
polymer shown in Fig. 4~a!, we see that the left-han
sidemost defect is almost perfectly resolved to just a sin
grid spacing. The measurements on the right-hand side
fect give rise to a splitting of the deconvoluted peak. Beca
the defect is a trench in the sample the electrode drops
the trench and short circuits the defect which causes a
nificant measurement error. This error appears as a spli
in the deconvoluted resistivity plot. Since the defects
trenches, one may ask if the sample can still be conside
two dimensional. The trenches however are shallow co
pared to the electrode pitch and an oxide layer between
silicon and the polymer prevents significant current fro
running through the bulk of the sample. As long as the el
trodes are not located directly on top of the defect,
sample can thus be considered two dimensional.

In a few special geometries, the method is not ap
cable. If the conductivity along the probe orientation var
with a period, p, equal to the four-point-probe electrod
spacing,s, the measured current–voltage will be indepe
dent of the position, thus the deconvolution will simply r
sult in a constant resistivity map. This is also true for high
harmonics of the period, i.e.,p5s/n,n51,2,3 . . . .When the
period is equal to the step size or its higher harmonics,
measurement is obviously independent of position and c
not be deconvoluted correctly. In the case of doubt, mapp
using probes with different spacings on the same sample
be used as a verification of the measured data. Special c
such as two closely spaced point defects and periodic c
ductance variation, will be investigated.20

The effective resolution of the four-point probe is high
dependent on the features of the conductivity landscape,
it is therefore difficult to establish a ‘‘native’’ resolution for
four-point probe. The resolution is ultimately limited by th
size of the contact area, which must be significantly sma
than both the step size and the electrode spacing. The sm
est electrode spacing reported for a four-point probe w
fixed electrodes is 300 nm,9 with contact areas of the order o
10 nm. Combined with the methods suggested in this arti
Downloaded 29 Jul 2003 to 133.11.199.16. Redistribution subject to A
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resolutions of the order of 20–50 nm may be possible. T
is a subject of further study.

The resolution obtained by the presented method doe
some extent depend on resistance lamdscape. Specific
the sample may contain harmonic components that the p
does not detect. In such cases, it is difficult to state an e
resolution for the method. Further investigations using d
ferent test models are necessary to clarify these aspects

For semiconducting systems, the metal–semicondu
contact interface perturbs a much larger area due to b
bending~Schottky contact!, and therefore a poorer resolutio
of the four-point method should be expected for semicond
tor systems. Alternatively, highly doped silicon probes cou
be used to measure on silicon surfaces, which could lea
nearly ohmic contacts. This would require the native ox
on both the probe and sample to be removedin situ, i.e., in
the ultrahigh vacuum system prior to measurement. The c
tact phenomena could in principle be incorporated in
deconvolution method. However, because the admitta
matrix would be changed at each contact position, it wo
have to be inverted every time, which would increase
amount of computational time tremendously.

One interesting feature of the model is the penalty fu
tion which, to a certain degree, allows the method to
customized. With low penalty factors, the height and po
tions of sharp features are reproduced accurately, whe
higher penalty factors effectively suppress oscillations in
termediate regions.

The method may be integrated with a four-point condu
tivity mapping station, so that nanoscale features are der
from resistance maps measured with microscale four-p
probes. This could lead to new insight in the properties
electron transport in individual grains of thin metal film
surface state domains, and nanostructured systems.
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