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Anisotropy in Conductance of a Quasi-One-Dimensional Metallic Surface State Measured
by a Square Micro-Four-Point Probe Method
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We have devised a ‘‘square micro-four-point probe method’’ using an independently driven ultrahigh-
vacuum four-tip scanning tunneling microscope, and succeeded for the first time to directly measure
anisotropic electrical conductance of a single-atomic layer on a solid surface. A quasi-one-dimensional
metal of a single-domain Si�111�4� 1-In had a surface-state conductance along the metallic atom
chains (�k) to be 7:2��0:6� � 10�4 S=� at room temperature, which was larger than that in the
perpendicular direction (�?) by �60 times. The �k was consistently interpreted by a Boltzmann
equation with the anisotropic surface-state band dispersion, while the �? was dominated by a surface-
space-charge-layer conductance.
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FIG. 1. Schematic drawings of the four-point probe method in
(a) linear and (b) square arrangements. The probes are equi-
measured resistance can be analytically calculated by distant from each other. Current and voltage probes are shown.
Low-dimensional metals represent a fascinating class
of materials, showing exotic properties such as non-
Fermi liquid behaviors. The transport phenomena of
such metals naturally provide intriguing and challenging
issues in condensed matter physics. While highly aniso-
tropic bulk crystals have been the targets for the past
decades, a metallic single-atomic layer or arrays of
metallic atom chains on semiconductor crystals have
recently been focused intensively, which has been trig-
gered by direct observations of a Peierls transition and
possible Luttinger-liquid behavior [1–5]. Thus, crystal
surfaces with atomically controlled structures are a new
promising playground for studying low-dimensional
transport phenomena, with expectations of advancing
from mesoscopic to nanoscale transport physics [6–8].

However, there have been no unambiguous, direct,
and quantitative measurements of electronic transport
through single-atomic layers on crystal surfaces
(surface-state conductance). Isotropic or anisotropic
two-dimensional (2D) conductance is typically mea-
sured by a two- or four-point probe method with van
der Pauw (Montgomery) arrangements in which the elec-
trodes are placed at edges of a sample [9,10]. Since the
electrode spacing is in macroscopic scales, the methods
are able only to detect conductance of metal thin films on
insulating substrates [11] or that of single-atomic layers
with daring subtraction of substrate contributions, leav-
ing quite large ambiguity [12,13].

Recently, we have developed microscopic four-point
probe (4PP) methods and have reported possible direct
detection of surface-state conductance [14–16]. Micro-
scopic 4PP measurements with �m probe spacing are
more surface sensitive than macroscopic 4PP ones, be-
cause the measuring current flows mainly near the sur-
face. Furthermore, by placing the micro-4PP at the center
of a macroscopic sample surface (�mm–cm in size), the
sample can be regarded as infinitely large, so that the
0031-9007=03=91(3)=036805(4)$20.00 
solving the Poisson equation [17]: Resistances of an infi-
nite 2D layer/sheet measured with linear 4PP [Fig. 1(a)]
and square 4PP [Fig. 1(b)] arrangements with equidistant
probe spacings should be
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respectively. �V is voltage drops measured by an inner
pair of probes in linear 4PP [16] or by a pair of any
adjacent probes in square 4PP. I is the measuring current
flowing through another pair of probes. �x and �y are
conductances along x and y directions, respectively, with
the sample surface being on the xy plane. Then one can
notice an important fact from Eqs. (1) and (2). Even if the
probes are rotated by 90� with respect to the sample
surface having anisotropic conductance, the linear 4PP
measurement gives the same value of resistance; �x and
�y are just exchanged with each other in Eq. (1). This is
true for any angles of rotation of linear 4PP, meaning that
Rlinear always gives a geometric mean of �x and �y only.
The square 4PP, however, gives different values of resis-
tance by exchanging �x and �y in Eq. (2) when the square
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is rotated by 90� or another combination of current and
voltage probes is selected. Thus, anisotropy in conduc-
tance of infinite 2D sheets can be measured only by the
square 4PP method, and �x and �y are obtained sepa-
rately from the two values of measured resistance.

In this Letter, we report the first measurements of
anisotropic surface-state conductance of a single-domain
Si�111�4� 1-In surface (inset of Fig. 2), by the square
micro-4PP method using an independently driven four-
tip scanning tunneling microscope (STM) [14]. The
surface-state band structure of this phase shows a quasi-
one-dimensional (1D) metallic character, and its Fermi
surface (Fermi line) is determined by angle-resolved
photoemission spectroscopy (ARPES) [1,2,18]. Its atomic
arrangement is a massive array of metallic quantum
wires composed of four lines of In atom chains running
along the 101� direction, each wire being separated by a
Si-atom chain in between the metallic wires [19–21]. In
order to improve the measurement precision in the present
work, the 4PP in square arrangement was rotated in a
step of 15� with respect to the metallic chains, and all
data were fitted by an analytical solution of the Poisson
equation to obtain the conductance parallel to the metal-
lic chains (�k) and that in the perpendicular direction
(�?) separately.

The 4� 1-In surface has nowadays attracted great
interest because of its Peierls transition [1,2], a possibility
of non-Fermi-liquid behaviors, and relating conductivity
changes [12]. There have never existed quantitative mea-
surements of anisotropic surface-state conductance.
FIG. 2 (color). I-V curves of a single-domain Si�111�4� 1-In
surface measured by square micro-4PP method with the probe
spacing (a side of the square) of 60 �m. The red and green
colors correspond to the measurements of �V23=I14 and
�V43=I12, respectively. The upper left inset is a SEM images
of the probes. The In chains were parallel to the 101� direction,
horizontal direction in this image, which was determined by
RHEED. The lower right inset is a STM image of the 4� 1-In
surface, separately taken by another single-tip STM.
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The measurements were performed at room tem-
perature by our four-tip STM system installed in an
ultrahigh-vacuum scanning electron microscope (UHV-
SEM) [14]. Each probe, made of a tungsten tip, was
independently driven with piezoelectric actuators and a
scanner in xyz directions to achieve precise positioning in
nanometer scales. The SEM was used for observing the
tips for positioning, as well as the sample surface together
with scanning reflection-high-energy electron diffraction
(RHEED) capability. Its details are described elsewhere
[14,15]. The four-tip probes can be made to contact to the
sample surface in arbitrary arrangements, with marginal
damage by a tunneling current approach and minute
direct contact, which was checked by SEM. Ohmic con-
ductance measurements were confirmed by both linearity
of current(I)-voltage(V) curves and resistance relation
derived from Green’s reciprocal theorem among a differ-
ent combination of current-source and voltage-sensing
probes. The 4� 1-In surface was prepared by In deposi-
tion onto a well-cleaned Si�111�7� 7 surface at 400 �C
with the help of in situ RHEED observation. A vicinal Si
wafer (15� 3� 0:525 mm3, P-doped, bulk resistivity
 	 1� 10 �cm) with 1:8� miscut from the (111) axis
was used to grow a single-domain 4� 1 phase [18].

Figure 2 shows I-V curves measured by the square
micro-4PP method with 60 �m probe spacing. �Vij
is a voltage drop measured between probe i and probe j,
with current flowing from probe k to probe l, Ikl (see the
upper left inset). Two values of resistance, �V23=I14 	
170 � and �V43=I12 	 10:3 k�, were obtained from the
gradients of the respective I-V curves, just by changing
the combination of current and voltage probes. A line
linking probe 1(2) with probe 4(3) is parallel to the
metallic In chains, while that connecting probe 1(3) and
probe 2(4) is perpendicular to the chains. The results
indicate that an exchange of �? and �k, corresponding
to �x and �y in Eq. (2), results in �60 times difference
in the measured resistance. This clearly demonstrates a
detection of the anisotropy in conductance, and also
means a direct detection of surface-state conductance
(because the substrate conductance is isotropic). By the
way, �V42=I13 was measured to be 9:83 k�. This indi-
cates �V23=I14 � �V42=I13 ��V43=I12, realizing Green’s
reciprocal theorem and confirming the Ohmic conductiv-
ity measurements.

In contrast, the resistance measured by the linear
micro-4PP method was essentially the same, irrespec-
tive of the probe orientation with respect to the In
chains. Figure 3 gives I-V curves measured with the
linear 4PP aligned parallel and perpendicular to the In
chains. The SEM images of the probes are shown in the
insets, where the In chains run in the horizontal direction.
The gradients of the I-V curves give almost the same
resistances, 4.4 and 5:3 k� within experimental error.
Other orientations of the probes gave the same results.
Thus, the distinction between Figs. 2 and 3 clearly dem-
onstrates the expectation from Eqs. (1) and (2).
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Although, in principle, two values of resistance ob-
tained by the square 4PP in Fig. 2, combined with
Eq. (2), allow one to derive �k and �? separately, the
4PP square was rotated around its center, by repositioning
each tip, and the square micro-4PP measurements were
performed every 15� rotation to improve the measure-
ment precision. The results are shown in Fig. 4, where
SEM images of the probes with some rotation angles are
also shown. The rotation angle, �, is defined by a line
formed by two current probes and the In-chain direction.
At each rotational position, two values of resistance,
�V23=I14 and �V43=I12, were measured. The results
shown here were acquired from an optimally prepared
4� 1-In surface.

The Poisson equation gives an analytical form for
resistance as a function of � measured by this ‘‘rotational
square micro-4PP method’’:
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Equation (2) is derived by inserting � 	 90� in Eq. (3).
By fitting Eq. (3) with the experimental data in Fig. 4, �x
and �y, corresponding to �k and �?, were determined to
be 7:2��0:6� � 10�4 and 1:2��0:1� � 10�5 S=�, respec-
tively, its anisotropy �k=�? being �60. The errors come
from the fitting process and are thought to originate from
deviation of the actual probe positions from the vertices of
the square. Negative values of �V=I at some � come from
deformed electrostatic potential contours due to the high
anisotropy in conductance.

We did the similar measurements with different probe
spacings. The Poisson equation tells that the conductance
FIG. 3 (color). I-V curves of a single-domain 4� 1-In sur-
face measured by linear micro-4PP method with 60 �m probe
spacing. The blue and purple colors correspond to the measure-
ments parallel and perpendicular to the In chains (horizontal
direction in these SEM images), respectively.
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measured by the linear or square 4PP method should be
inversely proportional to the probe spacing when the
measured region and resulting current flow are three
dimensional [14,15,17], but that it is independent of the
probe spacing in 2D cases as shown in Eqs. (1) and (2).
Through measurements with the probe spacing of 30�
120 �m, the conductance as well as the anisotropy were
found to be invariant with the probe spacing, indicating a
2D nature of the observed conductance.

We also performed similar measurements for the 1�
1-In (or

������
31

p
�

������
31

p
-In) phase that was formed with dif-

ferent In coverages and annealing temperatures on the
same substrate crystal [22]. The phase is known to have
isotropic 2D metallic surface states [23]. The anisotropy
in conductance for this phase was found to be 1:1� 1:8,
much smaller than that of the 4� 1-In phase. Such a
small anisotropy for the isotropic surface may come
from aligned steps on the vicinal substrate. Therefore,
we can safely say that the highly anisotropic conductance
for the 4� 1 phase is intrinsic in its surface-state bands.

Now, we discuss quantitatively the origins of the an-
isotropic conductance of the 4� 1-In phase. In general,
the measured conductance of a semiconductor crystal is a
FIG. 4 (color). SEM images of rotational square micro-4PP
measurements with 60 �m probe spacing, at (a) � 	 30�,
(b) 45�, (c) 60�, and (d) 90�. (e) Angle dependence of the
measured resistance �V=I of the single-domain 4� 1-In sur-
face. Experimental data are fitted by Eq. (3).
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sum of contributions from three current channels,
� 	 �ss � �sc � �b: (i) surface-state bands on the
topmost atomic layers (�ss); (ii) bulk-state bands in a
surface space-charge layer beneath the surface (�sc);
and (iii) bulk-state bands in the inner crystal (�b) [15].
According to the previous and our ARPES measurements
of this surface [18], the bulk-valence-band maximum at
surface is located at 0:12��0:01� eV below Fermi level,
indicating a formation of an inversion layer for an n-type
Si wafer and an existence of p=n junction between the
surface-space-charge layer and the underlying bulk [24].
The p=n junction ensures that the measuring current does
not penetrate into the bulk [25]. So we can ignore the bulk
current channel (�b). This is consistent with the result of
probe-spacing dependence mentioned above that the mea-
sured conductance has a 2D nature, because �sc of the
inversion layer as well as surface-state conductance �ss
are 2D due to current confinement between the surface
and the p=n junction [14,15]. It is noted here that the
inversion layer makes the measurements further surface
sensitive by eliminating the bulk conductance.

By solving a Poisson equation for the space-charge
layer for the present n-type wafer [24] with known values
of surface and bulk Fermi-level positions and bulk resis-
tivity , the thickness of the inversion layer was calcu-
lated to be 160 nm (for  	 1 � cm) and 490 nm (for
 	 10 �cm). The conductance of the inversion layer,
�sc, is then calculated to be 1:2��0:4� � 10�5 S=�
(for  	 1 � cm) and 1:9��0:5� � 10�5 S=� (for  	
10 �cm). The �sc is now turned out to be similar to
�?, but about 60 times smaller than �k. Thus, it is
obvious that �k is mainly a surface-state conductance,
�ss, while �? is dominated by the space-charge-layer
conductance �sc. In fact, the In-coverage dependence of
�? was quite similar to that of the band bending, but �k

changed in a different way. The details will be reported
elsewhere. Thus, the interchain conductance (�?) is
mainly through the surface space-charge layer.

Next we discuss the �k using a Boltzmann picture with
the known Fermi surface of the 4� 1-In surface states
[1,18]. A relation between the 2D conductance and Fermi
surface derived from Boltzmann equation is given as
follows, with an approximation that the carrier relaxation
time � is independent of electron wave vector [26]:

�ij 	
e2�

2�2 �h

Z vkivkjdkF
jvkj

; (4)

where kF and vki are Fermi wave vector and Fermi
velocity vector along the i direction, the latter being
obtained from the surface-state band dispersion, vk 	
rkEk= �h. Inserting the corresponding parameters re-
ported by the previous ARPES results, the conduc-
tance tensor was calculated, and finally we obtained
�k�	 �xx� 	 1:4� 1011 � �kS=�� and �?�	 �yy� 	
7:2� 109� �?S=��, where �i is relaxation time in the
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i direction. By comparing this �k with the experimen-
tally obtained one, the relaxation time along the In chains
is �k 	 5:2��0:8� � 10�15 sec. This value is similar to
that in bulk In crystals and smaller than that of typi-
cal metal by nearly an order of magnitude, calculated
by the Drude model [27]. The mean-free path along the
In chains, estimated from this relaxation time and the
group velocity at the Fermi level, is about 5 nm. By
assuming �k 	 �? crudely, one can derive the anisotropy
in surface-state conductance to be 19, which is reasonable
with the experimental one.
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