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Electrical Resistance of a Monatomic Step on a Crystal Surface
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We have succeeded in measuring the resistance across a single atomic step through a monatomic-
layer metal on a crystal surface, Si�111��
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�-Ag, using three independent methods, which yielded
consistent values of the resistance. Two of the methods were direct measurements with monolithic
microscopic four-point probes and four-tip scanning tunneling microscope probes. The third method
was the analysis of electron standing waves near step edges, combined with the Landauer formula for
2D conductors. The conductivity across a monatomic step was determined to be about 5�
103 	�1 m�1. Electron transport across an atomic step is modeled as a tunneling process through an
energy-barrier height approximately equal to the work function.
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Rapid progress in the miniaturization of microelec-
tronics devices now forces signal currents to flow near
the surface/interface region in semiconductor crystals,
and ultimately, with continued miniaturization, will
force the current through only one atomic layer. On an
atomic (nanometer) scale, carriers strongly interact with
localized scatterers. On crystal surfaces, atomic steps [1]
are unavoidable defects, which become inevitable bar-
riers for carrier transport through the topmost atomic
layers in crystals. In this Letter, we report the measure-
ment of the value of the conductance across a single
atomic step per unit length and the transport processes
involved.

A conductive metallic monolayer on a semiconductor
crystal surface, Si�111��
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�-Ag surface superstruc-
ture, was employed as the sample. The surface has a
parabolic electronic band crossing the Fermi level with
a circular Fermi surface, indicating an isotropic two-
dimensional free-electron like metal of monolayer thick-
ness [2,3]. Recently, transport measurements with state-
of-the-art monolithic micro-four-point probes (MFPP)
and four-tip scanning tunneling microscope (STM)
probes have been reported to be successful in ob-
taining (anisotropic) conductance values of atomic-scale
structures on semiconductor surfaces, including the
Si�111��
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�-Ag surface [4–9]. In the present study,
two independent direct measurements of step resistance
were performed with the same monolithic MFPP and
four-tip STM techniques for surfaces with controlled
step configurations. One was through measurements of
anisotropy in sheet conductivity of a vicinal crystal sur-
face where atomic steps were regularly aligned with al-
most equal spacing in one direction, and the other was
through measurements across step-bunched regions
where hundreds of monatomic steps were accumulated
[10]. The results were then compared with that obtained
using the ‘‘conventional’’ method of analyzing Friedel
oscillations near step edges derived from microscopic
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surface images taken using scanning tunneling spectros-
copy, dI=dV. At various values of the tip bias, standing
waves near the steps were observed and the transmission
probability was determined from the reflection phase
shift. The Landauer formula relates conductance, �, and
the transmission probability, T. It varies with the dimen-
sions. The conductance of 1D, 2D, and 3D conductors
through 0D, 1D, and 2D potential barriers is generally
expressed [11], respectively, by

�1D �
2e2

h
T �	�1�; (1)
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h
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�

T �	�1 m�1�; (2)

�3D �
2e2

h
k2F
4�

T �	�1 m�2�; (3)

where e, h, and kF are the elementary charge, Planck’s
constant, and Fermi wave number, respectively. �1D is a
well-known formula for conductance quantization at
nanowires and point contacts. �3D is also used for the
analysis of tunneling devices. On the other hand, �2D has
not been utilized much previously due to the lack of
appropriate systems. The present case of 2D metallic
monolayers (2D conductor) separated by a monatomic
step (a 1D potential wall) is obviously suitable for such
unusual research. Through the �2D analysis, we experi-
mentally obtained the conductance or the conductivity
across a step per unit length. All of these measurements,
the four-tip STM, the monolithic MFPP, and dI=dV, gave
consistent values of resistance. Electron transport across
an atomic step is fairly modeled as a tunneling process
through an energy-barrier height approximately equal to
the work function. This is the first direct measurement of
electrical resistance of a monatomic step.

For the first direct determination of conductivity across
steps, we prepared the �
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�-Ag surface structure on
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a vicinal Si(111) crystal having a miscut angle of 0:9 	 or
1:8 	 toward the ��1 �1 2� axis. The anisotropic conductivity
was electrically measured by the so-called rotational
square (RS) MFPP method [9] using the four-tip STM
at room temperature. This is a four-point probe resistance
measurement in a square arrangement of the four probes
with several tens of �m probe spacing, as shown in Fig. 1,
and the square is rotated with respect to the sample
surface. On our sample surface, all the steps were aligned
along the ��110� crystal axis and distributed uniformly
with almost equal spacing (10–20 nm) over the surface,
as judged from the STM observations (Fig. 1). On a
micrometer scale, the vicinal surface can be regarded as
an anisotropic 2D conductor because of the aligned step
array; the conductivity in a direction perpendicular to the
steps should be lower than that parallel to the steps.
Therefore, any anisotropy in conductivity detected by
the RS-MFPP measurement can be attributed to the steps
and we can determine the resistance caused by atomic
steps directly from the anisotropy. This is because any
channel for electrical conduction near the surface
(surface-state bands on the topmost atomic layers, bulk-
state bands in a surface space-charge layer beneath the
surface, and bulk-state bands in the inner crystal) is
isotropic.

The resistance of the �
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�-Ag surface on a 1:8 	

miscut wafer is shown in Fig. 2 as a function of the
rotation angle of the square relative to the �110� direction.
By fitting the results with a formula derived from the
Poisson equation [9], we obtained sheet conductivities
parallel (�==) and perpendicular (�?) to the step direc-
tion separately; �== and �? are 23� 10�6 and 14�
10�6 	�1 ��1, respectively, so that the anisotropy is
�===�? � 1:6. For a sample with a smaller miscut angle
on the crystal surface, we obtained a smaller anisotropy
because of the lower step density.
FIG. 1 (color online). (a) A scanning electron microscope
(SEM) image of the four scanning tunneling microscope
(STM) tips during direct transport measurement. (b) A
topographic STM image of monatomic steps on Si�111��
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�-Ag on a vicinal Si(111) wafer taken with a tip bias, Vt, of
�3:0 V. The schematic resistance of a step is depicted in the
image.
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As described above, the difference of sheet resistance
between step-perpendicular, 1=�?, and step-parallel,
1=�==, directions is ascribed to the resistance associated
with monatomic steps. The conductivity across a step of
unit length �step (	�1 m�1) can be related to the sheet
conductivities �== and �? by

Nstep=�step � 1=�? � 1=�==; (4)

where Nstep (m�1) is the step density on the sample
surface. Our vicinal Si(111) wafer with a miscut angle
of 1:8 	 has Nstep � 108 m�1. Therefore, we get
�step � 3� 103 	�1 m�1.

For the second method of direct measurement of re-
sistance across the steps, we have previously conducted
linear MFPP measurements across a step-bunching re-
gion on the �
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�-Ag surface at room temperature
[10]. The measured resistance across the step-bunching
region, which consists of �300 monatomic steps with a
step interval of several tens of nm, is higher by about
800 	 when compared to the almost step-free terrace
region. Through proper theoretical simulation [12], the
resistance of the step-bunching region was determined to
be about 1700 	. The relationship between resistance at a
step-bunching region and that at a step can be written as

Rstep bunching � Bstep bunchingRstep (5)

� Bstep bunching=�lcurrent�step�; (6)

where Rstep bunching and Rstep are resistance (	) at a step-
bunching region and a monatomic step, respectively.
FIG. 2. Resistance measured as a function of the rotation
angle in the rotational square micro-four-point probe (RS-
MFPP) method for the �
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�-Ag surface on a vicinal
Si(111) wafer (n-type, 1–10 	 cm) with a miscut angle of
1:8 	 at room temperature. The probe spacing (a side of the
square) was 60 �m. Experimental data are fitted by a function
described in Ref. [9].
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Bstep bunching is the number of steps in a step-bunching
region (�300) while lcurrent is the step length (m) through
which the current passes. Solving a simple Poisson equa-
tion of the present probe arrangement indicated that al-
most 90% of the surface current was spread over twice the
length of the current probe spacing in a direction perpen-
dicular to the probe alignment. In the case of the present
probe spacing of 8 �m, the two current probes are sepa-
rated 24 �m from each other and lcurrent is estimated to be
about 50 �m. Then, for Rstep bunching � 1700 	, we find
�step � 4� 103 	�1 m�1. This value shows good agree-
ment with the result of the four-tip STM measurements. It
is to be noted that these values were measured at room
temperature.

We next consider the experiments with the single-tip
scanning tunneling spectroscope. Figure 3(a) shows the
STM and spectroscopic dI=dV images of the �
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�-Ag surface near an atomic step at 65 K [13,14]. It
can be seen that the �
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�-Ag surface superstructure
almost extends up to the step edge [1]. In the dI=dV
images, the modulation of the local density of states
(LDOS) standing wave (Friedel oscillation) is caused
by interference in the carrier scattering at a step. Its
physical properties have been well studied on noble metal
surfaces [15–19]. The wavelength varied with tip bias (not
shown here) [15,16], and the energy versus wave number
dispersion obtained through the bias-dependent standing
waves showed a parabola with an effective mass equal to
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FIG. 3 (color online). (a) STM and LDOS (dI=dV) images
near a monatomic step on the surface of a flat wafer acquired at
Vt � �0:9 V. The dI=dV image is taken using lock-in detec-
tion. (b) Line profiles across a step in STM (Vt � �0:9 V) and
dI=dV (Vt � �0:7 V) images. The step edge (x � 0) is indi-
cated by a straight dashed line. The fitting function shown as a
curve is described in the text. (c) Changes in the reflection
phase shift with energy. Solid circles and diamonds are data
points from the present work and the previous report [20],
respectively. A least-squares fit is shown as a dotted line. The
energy position on the horizontal axis is the bottom of the
surface-state band, Emin. This is because energy positions with
respect to the Fermi level (EF) vary among the different STM/
STS scanning regions on a semiconductor surface at low
temperatures due to a tip-induced local band bending effect.
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that obtained by angle-resolved photoemission spectros-
copy (ARPES) [2,3,20,21].

Figure 3(b) shows topographic STM and dI=dV
profiles over a step. The damped oscillation in the
LDOS along a direction perpendicular to the step edge
(x axis) is fitted using a function, LDOS�x� /
exp��x=L� cos�2kx� ��, where L, k, and � are the decay
length, wave vector, and reflection phase shift, respec-
tively [18]. The reflection phase shift � is derived at each
tip bias and plotted in Fig. 3(c). Within the experimental
error, � is almost constant in the measured energy range.
In the figure, the energy position on the horizontal axis is
referred to as the bottom of the surface-state band, Emin.
According to previous ARPES studies [2,3], Emin is lo-
cated at a binding energy �0:3 eV below EF, so that EF is
located at �0:3 eV in Fig. 3(c). The reflection phase shift
around EF is then determined to be about
��0:8 0:05��.

Once the reflection phase shift at a step was deter-
mined, the transmission probability, T, was determined
through the �-potential model [19] and the conductance
through a step could be derived from the Landauer for-
mula [11]. The �-potential model is suitable for the present
system for the following reasons: (1) Since the surface
state crosses EF in the bulk band gap, no carrier scatter-
ing of surface-state electrons into bulk states occurs
[17,19]. (2) The model gives more precise values for
thinner potential widths; the step-edge potential barrier
is as thin as an atom [11]. The transmission coefficient T
and the reflection phase shift � are related by T � 1�
�1� tan2��� ����1 [19]. Inserting the experimentally
determined � into this equation, T was determined to
be 0:3 0:15. The conduction electrons in the �
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�-Ag layer (surface state) pass through a step with a
probability of about 30%. It should be noted that the
transmission probability is the same for the step-up and
step-down directions. This is supported by experimen-
tally observed linear I-V curves in the present conductiv-
ity measurements and theoretically by the WKB
tunneling regime typically used in STM theories [22].
Inserting T determined above and kF (�0:1 #A�1) deter-
mined in the previous ARPES measurements for the
�
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�-Ag surface [2,3,21] into Eq. (2), �2D at a
monatomic step on this particular surface is determined
to be �2D � 9�4� � 103 	�1 m�1. The �2D reasonably
matches the �step obtained by the two independent meth-
ods of direct electrical measurements described earlier in
the Letter. It should be noted that in the Landauer regime,
the conductance is independent of temperature when the
transmission coefficient (the reflection phase shift) is
independent of energy [23]. The experimental result in
Fig. 3(c) clearly supports this picture.

It is now obvious that conductance across a monatomic
step on the �
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�-Ag surface is about 5 �
103 	�1 m�1. When electrical current flows through a
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step of 1 cm, 1 mm, 1 �m, and 1 nm length, the resist-
ance across the step should be 0.02, 0.2, 200, and 2�
105 	, respectively. The resistance is negligible on a
macroscopic scale, but large for nanometer length scales.

The reasonable agreement among the three indepen-
dent methods used indicates that electron transport
through a monatomic step on a crystal surface can be
modeled as an electron tunneling process. The � potential
adopted in the present study yields the product of poten-
tial barrier height and potential width, V0a, of the atomic
step to be 10�6� eV #A. This value is similar to those
reported on the vicinal Au surface estimated by ARPES
data [24]. Assuming a as a bond length of the bulk Si
crystal (2:35 #A), V0 is 4:5�2:5� eV. This value roughly
corresponds to the work function of the sample surface.
This implies that, at a step, carrier electrons in metallic
overlayers on semiconductor substrates tunnel through an
energy barrier corresponding to the energy difference
between the vacuum level and the Fermi level. The po-
tential barrier height of the work function may be a good
approximation to estimate conductance across an atomic
step for other material systems.
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