Exploring Dark Energy in the Universe
Yasushi Sato, Masahiro Takada and Hiroaki Aihara

abstract: Dark energy in the universe has emerged as one of the most embarrassing and fundamental unsolved problems in physical science. The name itself was coined by Michael Turner at University of Chicago, who indeed admitted that “Our main achievement in understanding dark energy is to give it a name.” Similarly, other famous physicists expressed their own frustrations in various ways, including “Right now, not only for cosmology but for elementary particle theory this is the bone in the throat” (Steven Weinberg, The Nobel Prize in Physics 1979), “Would be number one on my list of things to figure out” (Edward Witten, The Fields Medal 1990), and “Maybe the most fundamentally mysterious thing in basic science” (Frank Wilczek, The Nobel Prize in Physics 2004). In this article, we describe why cosmologists tend to believe in dark energy, and then discuss future prospects to unveil the nature of the most mysterious component in the universe.
2. Landauerの公式と単原子ステップ近傍の走査トンネル分光観察

一般に電子が散乱体に入射すると一部は反射され、残りは透過する[図2(c)]。このときの電子の透過率$ T $はコンダクタンスと比例しており、その両者の関係を示したのがLandauerの式である。この式は伝導体の二次元性によって異なり、1次元、2次元、3次元の伝導電子が0次元、1次元、2次元のポテンシャル障壁を通過する場合、一般的にそれぞれ

$$ \sigma_{DD} = \frac{2e^2}{h} \cdot T \quad (\Omega^{-1}) $$

$$ \sigma_{DD} = \frac{2e^2}{h} \cdot \frac{k_F}{\pi} \cdot T \quad (\Omega^{-1} \text{m}^{-1}) $$

$$ \sigma_{DD} = \frac{2e^2}{h} \cdot \frac{k_F^2}{4\pi} \cdot T \quad (\Omega^{-1} \text{m}^{-2}) $$

と表すことができる。ここで、$ e $は電気荷量、$ h $はプランク定数、$ k_F $はフェルミ波数である。ただし、これらの式では透過率$ T $はエネルギーに依存しないと近似している。$ \sigma_{DD} $はナノサイズや点接触のコンダクタンス量子化で使用される有名な公式である。特に、物質に依存しない普通物理定数だけで表されているのが特徴。それに対して、2次元および3次元の式には物質に依存するフェルミ波数$ (k_F) $が入っているため、量子化単位が普通定数にならない。

$ \sigma_{DD} $はトンネル効果の解析にこれまで使われてきたが、$ \sigma_{DD} $の公式を適用できる系がこれまであまり知られていない。本研究で対象するのは単原子ステップによる2次元ポテンシャル障壁により構成された2次元金属層(2次元伝導体)であり、まず、この$ \sigma_{DD} $の式が当てはまる系であると言える。

単原子ステップを通じて電子の散乱現象を調べるにあたり、我々は試料表面として、先に説明したSi(111)/3×√3-Ag
Ag表面を使用した（図1）、下地が半導体であるのに対し、この準元素電正は自由電子的な金属バンドを持ち、自由電子はエネルギー（E）と波数（k）の関係がE＝h²k²/2m*の関係があるの2次元自由電子の場合バンド分散はk_xはk_yの軸に対して直交する2次元波線で、フェルミ面は自由電子波数k_Fが半径となる完全な円を成す。図3は我々が角度分解光電子分光法（Angle-Resolved Photoemission Spectroscopy; ARPES）によって得た表面とパルクのバンド分散図である。図中、明るい部分（光電子強度の強いところ）にバンドが存在し、それに重なる散乱面が存在する。図3(a)と(b)は広い波数域のバンド構造である。このうち、重要なのはフェルミ準位（E_F）の位置で、実体にバンドの存在しない領域（黒い領域）が広がり、これはSi下地基板の半導体バンドギャップに対応する。しかし、波数（k_x）が1.1Å⁻¹の辺りではE_Fを破壊する（金属）バンドが存在し、これはSi(111)−3×3×3-Ag表面によってもである。このようにして電子束を入射しても表面層によってはギャップ内に金属的なバンドを有するものができるので、下地パルク内の電子状態をとおり離されていなくとも言える。さて、バンドがE_Fを破壊する波数（フェルミ波数、k_F）ではE_Fでの光電子強度が大きく、そこでその強度を波数（k_x, k_y）に対してプロットすると、フェルミ面がマッピングされる。図3(a)のようにSi(111)−3×3×3-Ag表面の金属バンドのフェルミ面は完全な円を成し、k_Fはおよそ0.1Å⁻¹となっている。一方バンド分散は図3(b)のように放物面的である。このようにSi(111)−3×3×3-Ag表面の電子系は単純な自由電子であることが確認でき、波動関数も2次元平面波として取り扱うことができる。

さて、この2次元平面波が1次元のポテンシャル障壁であるステップに衝突すると入射波と反射波の間で干渉を起こし、障壁近傍で局所状態密度（Local Density of States; LDOS）が距離に対して振動するいわゆる“定在波（standing wave）”が形成される。これにより、表面構造の特性を反映する電子状態を観察することができる。このLDOSを以下に示す方法で解析すると、ステップにおける表面電子波の反射相関の強度が求められ、さらに波動関数の調節率を決定できる。

図4(b)のように、LDOSはステップ端の垂直方向（γ軸方向）に沿って減衰しながら振動し、この様子を以下に示す。

LDOS(y)∝exp(−y/L)×cos(2k_y−η)

ここでLは減衰長、k_yは波数ベクトル、ηは反射相関の強度であり、ステップ端はy=Lに位置する。ここで様々な電子衝突電圧のSTS像のラインプロファイルを取得、(4)の関数
でフィッティングを行って各パラメーターを抽出した。図4(d)の挿入図に図4(b)から得られたラインプロファイルとフィッティング曲線を示す。定在波の振動周期はトンネル探針電圧によって変化し、波数とエネルギー（電圧）の関係にはARPESで得られたものと同じ実験的分散関係（図3(b)）があった。様々なエネルギーでのLDOSの振動から反射位相シフト（γ）とエネルギーの関係を求めた。その結果は、図4(d)に示すように測定したエネルギー範囲においてほどとんと一定であった。Hvはバンド底から約0.3eVのところにあり、その付近の反射位相シフトは約−0.8±0.05πである。

さて、最終的にLandauerの公式（2）よりスキャップのコンダクタンスを求めるには透過率Tが必要であるが、反射位相シフトからその値を求めるのはスキャップにポテンシャル障壁を仮定しなければならず、そのポテンシャルモデルとして最も簡単なのが2段階型ポテンシャルモデルであり、これまでも金属表面における電子波の透過・反射の議論に使用されてきた。このモデルを用いると、透過率TはE_p単位での反射位相シフトγを使って、

\[T = \frac{1}{1 + \tan(\gamma / 2)} \]

と直接表すことができる。このモデルでは(i) 表面電子がパルク基底面内に散乱されない、(ii) ボテンシャル障壁幅が十分に薄い、という条件を満たすときに適用される。本研究で対象とする系は(i) 表面状態がパルクバンクギャップ内にあるため電子が表面状態からパルク状態への散乱がほとんど起きず、そして(ii) スキャップ端はほぼ原子レベルの幅しかないため、これらの条件を満たしている。この式(5)に実験で決定したγを代入すると、T=0.3±0.15となった。すなわちこのモデルにおいて、Si(111)/3×3-Ag表面層（表面状態）を流れる伝導電子の原子スキャップでの透過率が大きく30%に見積もられる。

以上で決定したTと光電子分光から得られたk_Fの値(=0.1 Å⁻¹)を式(2)に代入すると、単原子スキャップのコンダクタンスは \(\sigma_{mp} = 9(±4) \times 10^{-3} \Omega^{-1} \) m⁻¹となった。この値の意味としては、1メートル/平方の2次元完全導体中に単原子スキャップが1本あり、それを電子が横切るときのコンダクタンスを考えるとよい。この結果は後の電気伝導測定の結果と比較される。

3. 単原子スキャップの電気伝導の直接測定

試料の電気伝導度（電気抵抗）を測定するにはふつう4端子法が用いられ、van der Pauw法やMontgomery法が知られている。これらは試料の端に電極を取り付けるので端子間隔はnm以上となり、測定電流が下地板に流れる。表面一厚層のみを測定するのは困難である。そのためにこれまでの表面電気伝導の研究では、絶縁体基板上の比較的厚い金属薄膜を対象とするか、あるいは下地板の電気伝導度を解析の時点で大胆に差し引かなければならない。

図5 (a)直線配置（等ポーラー周波数）による4端子測定の様子図、電流および電圧プローブを図中に示す。 (b) モノリシックブロープによる(直線)マイクロ4端子測定のSEM像。 (c) 正方形配置（等ポーラー周波数）による4端子測定の様子図。 (d) 独立駆動型4探針STMによる正方形4端子測定のSEM像。
力顕微鏡 (AFM) のカンチレバーとほぼ同等な弾力性を持ち、現在このプロープは Capres 社において販売されている。
これのプロープを表面垂直方向に動かして試料表面に接触させて表面の電気伝導度を計測できる単純さが利点である。最近我々は 10 Kから室温まで温度を変えながら、このプロープによる電気伝導度が行える装置を立ち上げ、表面 1次元 In 鍍の金属-絶縁体移動 (バイエルス移動) による電気伝導度の変化や表面での局所による伝導変化の測定に成功した。

しかししながらこの直接配置による 4 端子測定では、x-y 平面の電気伝導度が異方性があった場合（α₂≠α₃）、たとえ 4 端子プロープをサンプルに対して 90°回転しても測定抵抗値は変わらない。これは式 (6) で α₂ と α₃ を交換しても、

\[V/I = \frac{1}{2 \pi \sqrt{\alpha_2 \alpha_3}} \ln \left(1 + \frac{\alpha_2}{\alpha_3} \right) \]

(7)

ここで、I は列向き 2つのプロープ間を流れる電流、V は列向きの 2つのプロープ間の電圧降下である。この場合、異方性コクタクタンスを持つ試料を介して測定すると（電圧-電流プロープ対の組み合わせを変えて式 (7) の α₂ と α₃ を交換すると）、異なる測定抵抗値（V/I）が得られることが分かる。すなわち、無限 2次元シートの異方性コクタクタンスを計測するには正方 4端子測定が必要であり、また α₂ と α₃ が 2つの異なる測定抵抗値から直接求めることが可能。さらに Poisson 方程式から、4つのプロープが作る正方形の回転角に対する抵抗値の解析解を求めることができ、

\[\frac{V}{I} = \frac{1}{2 \pi \sqrt{\alpha_2 \alpha_3}} \times \ln \left(\frac{(\alpha_2 / \alpha_3 + 1)^2 - 4 \cos^2 \theta \sin^2 \theta}{(\alpha_2 / \alpha_3 - 1)^2} \right) \]

(8)

となる。式 (7) は粒子 (8) で θ = 90°を代入すると得られる。

すなわち図 6 のように正方形を回転させて 4 端子測定を行い、実験結果を式 (8) でフィッティングすることにより高い精度で α₂ と α₃ を別に求めることができる。

このような正方配置およびその回転を伴うブロープ測定として、我々は独自に開発した独立駆動型 4 探針 STM 装置を用いた。

この装置では 4 本のブロープのうち全ての STM 探針を用意した。STM 探針は通常 STM 観察に使用するが、先端が電荷レベルまで短いのでポイントプロープとしても適用している。本装置では STM 観察と電気伝導度測定モードを切り替え使用する。各 STM 探針は x, y, z 方向にそれぞれ自在に駆動でき、その動作を SEM 観察により制御する。図 5(d) は 4 つの STM 探針の先端を正方形に配置した SEM 像である。また図 6 には 180°の回転させた測定を示す。以上のように先のナノスキャイブプロープに比べてこのシステムは複雑であるが、直線、正方形、等方性ブロープ配置を取ることができ、また表面上のナノ構造を設計的に電気伝導測定ができる利点がある。最近我々は Si 表面上の個々の金属ナノ粒を 1 次元電気抵抗や In および Au の金属膜面の異方性電気伝導度を測定してきた。6, 10 現在では温度変形状の独立駆動型 4 探針 STM 装置の開発を行っている。

マイクロ 4 端子ブロープを用いると、高い表面感度でコクタクタンスを測定できるが、その絶対値には下地基板（パイル、空間電荷層）のコクタクタンス分解をみちわけしなければならない。そのため、ステップに起因した電気抵抗を抽出するために、ステップ分布の異方性を計測し、この目的でナノスキャイブとして、単原子スキャイブが規則正しく整列した微細表面である Si(111)-\(\sqrt{3} \times \sqrt{3} \)-Ag 構造（図 2(d)）の回転正方形マイクロ 4 端子測定を行った結果について説明する。実験では、Si 結晶基板として（111）表面垂直方向から（112）方向に 0°、1.8°傾けで切られた斜面のものを用いた。39 図 2 の挿入図（STM 像）に示すように、ステップはすべて [110] 軸方向に配しており、ほぼ等間隔（10~20 nm）で均一に分布していた（図 2(d) 参照）。このようなナノスキャイブの構造体を実験で測定されるマイクロスキャイブから見ると、直傾斜表面は異方的な 2 次元電気伝導体とみなすことができる。なぜならステップ列の垂直方向には抵抗が高いと予想されるからである。

先に示したように、テトラス上のか \(\sqrt{3} \times \sqrt{3} \)-Ag 超構造のフェルミ面は完全な円であり、また表面の下にある表面空間電荷層のパルク状態バンドおよび結晶の内部のパルク状態バンドも等方的である。すなわち、電気伝導度の面内異方性が検出された場合、これはステップ列に起因し、ステップに垂直な方向の電気伝導度はその平行方向よりも低くなると考えられる。それゆえ、回転正方形マイクロ 4 端子測定によって検出されるコクタクタンスの異方性から直接ステップの情報を得ることができ、さらにステップの
図7 微傾斜Sn(111)ウェーハ上の1/3×1/3-Ag表面の面内正方マクロ4
端子測定。各回転角 (θ) における抵抗値 (V/I) 測定は室温で行われ、プロー
ープ間隔は60 μm。曲線は理論値を式(8)によるフィッティングで求められ
た。挿入図a: 表面のSTM 像。

本のコンダクタンス値を直接決定することはでき
る。図7は、1.8°傾いた微傾斜面上の1/3×1/3-Ag 表面での抵抗
を [110] からの4本のプローブが作る正方形の回転角θに対
してプロットしたものである。ここ回転正方マクロ4
端子測定の結果を式 (8) でフィッティングすると、ステ
ップに平行な方向のシートコンダクタンス (σperp) は 23×
10^-8 Ω^-1 m^-1、ステップに垂直な方向のシートコンダクタ
ンス (σparal) は 14×10^-8 Ω^-1 m^-1 と求められ、異方性 (σperp/σparal)
は約1.6であることが分かった。なお0.9°傾いた微傾斜面では、ス
テップ密度が下がるのでさらに大きな異方性を観測した。
前述のようにこのσperpとσparalの差は、単原子ステップに起因している。
このことから単原子ステップを横切るときのコンダクタンス、σstep(Ω^-1
m^-1) を持つ単原子ステップが表面に密度Nstep (cm^-2) で分布
しているとき、

\[N_{step}/N_{a} \sim 1/\sigma_{paral} - 1/\sigma_{perp} \]

(9) という関係がある。今回実験で使用した1.8°の傾斜表面
の場合、N_{step} \approx 10^6 m^-2 であるので、σ_{step} \approx 3×10^-7 Ω^-1 m^-1
と求まった。この結果は傾斜で求めたSTM/STS観察によ
って見積もった電極伝導度とよく一致している。

次に、表面の不均衡性を利用してスケートとして、ステッ
プバンクティング (step bunching) を含む表面 (図2(e)) の電気
伝導測定の結果を示す。実験では、まず約300本の単原子
ステップが凝集したステップバンクティング領域のある基板
表面を用意した。そしてその上にSn(111)/1/3×1/3-Ag を作
成して、マクロ4端子計測をノミフレクスプローブを用
いて行った。図8は測定時のSEM像と4つのプローブの
中心位置に対する電気抵抗の変化である。

ここでR_{SS} と R_s はそれぞれステップバンクティング領域と原子ステ
ップ1本の抵抗 (Ω) である。すなわち測定された抵抗値
から、上記の式を用いて、求めたいステップ1本のコンダクタンス値を抽出する。R_{SS} はステップバンクティング領域内
のステップ数 (この場合約300) であり、I_{current} はプローブ電流
がステップを通過する幅 (m) であるこのI_{current} 値の決
定には、Poisson 方程式に基づいた電流分布のシミュレ
ーションが必要であるが、図8(a) と (b) のようなステップバ
ンクティング領域を含む表面とプローブの配置について実際に
計算をするのは困難である。そこで我々は均一な表面系に
ついて、本測定配置における電流分布をシミュレーション
したところ、4つのプローブ端子が成す直線配置の垂直方
向に対して電流プローブ間距離の2倍の範囲内に約90%の
表面電流が広がっていることが分かった。またマクロ4端
子計測の探針間隔8 μm では電流プローブ間隔は24 μm で
あり、その結果I_{current} は約50 μm と見積もった。そして
R_{SS} = 1,700 Ω とし、これに代入すればσ_{step} \approx 4×10^-7 Ω^-1 m^-1 とな
る。このσ_{step} 値は先に求めた2つの結果とよく一致して

図8 モノモリシックマクロ4線をプローブ (8 μm-プローブ間隔) によるス
テップバンクティングのSn(111)/1/3×1/3-Ag 表面の測定。図内(a) (b) (c)
の2つのプローブで計測された電位差。E と E 'の2つの電流
プローブで流れる電流。電流は電流電圧を (deconvolution) 解析して得ら
れた抵抗値を表す。測定は常温で行われた。挿入図: プローブの中心が(a)
ステップバンクティング領域 (b) ステップバンクティング領域にあるときのSEM 像。
いる。

以上のように、本研究では65 KでのSTM/STS観察と室温での2種類の電気伝導測定の結果を比較した。その結果、表面電子のスチューピーを通過する電子数（反射位相シフト）はエネルギー依存せず[図4(d)]。式(2)適用の妥当性が確認できる。このLandauerの濃膜では温度因子が相殺されるので、コンダクタンス値は温度依存しない。105 実際65 Kで観測されたコンダクタンス値は、室温でのステップの電気伝導測定の結果と一致することが確認された。

4. まとめ—単原子ステッピーを通過する電子の輸送過程

本研究では3つの独立の手法により金属単原子層表面上の原子ステッピーを構成する方向の電気伝導度を測定した。そしてこれら実験結果はほぼ同じで、単位長さ辺りの単原子ステッピーのコンダクタンス(G0_σ)は約5×10^6 Ω^(-1)m^(-1)であることが分かった。長さ1 cm、1 mm、1 μm、1 nmのステッピーを電流が構成するとき、このコンダクタンス値から計算すると電気抵抗値はそれぞれ0.02, 0.2, 200, 2×10^6 Ωとなる。すなわちステッピーの抵抗はメタスケールではほとんど無視できるが、ナノスケールの領域では無視できないほど大きさい。

一方、本研究によって単原子スチューピーを通過する電子の輸送過程として、温度に依存しないトンネル過程モデルが示唆される。そこで、Blocker型ボテンシャルモデル9)に基づき、そのボテンシャル障壁の大きさは4.5(土0.25) eVと見積もられた。10)この値は光電子分光の測定から得られたSi(111)/3×3-Ag表面の仕事関数(~4.4 eV)に近い。すなわち高さの異なる伝導電子が移動するモデルとして、原子単位に相当するエネルギー障壁をフリミ電子がトンネル過程を通過するという想像が考えられる。一方、最近Si(111)/3×3-Ag表面の原子スチューピーのコンダクタンス値が量子重視型に基づいた理論的計算が行われ、表面電子波がSバウンドギャップの内にエヴァッセント波と連続的につながるトンネル過程でも、本研究の結果を再現できることが分かった。10)

以上のように本研究は半導体表面上のメタスケールでの原子スチューピーを通過する電子の輸送現象を様々な面で解析し、その結果単原子スチューピーは原子スチューピーの電気抵抗特性に、またトンネルボテンシシャル障壁としても機能すことが分かった。ステッピーは固体表面上に必ず存在し、表面の化学組成、結晶方位によってその性質は異なり、さらに選択的に原子-分子を吸着させて修飾することもできる。すなわちこれら多様多様なスチューピーはそれぞれ特有の電気(電磁)伝導を発現することが期待され、本研究で取り扱った単原子スチューピーはほんの一部に過ぎない。10, 11, 17, 40, 42) また本研究の電気伝導測定は室温で行われ、ステッピー間隔(数nm)が室温における表面電子のコヒーレンス長や非弾性散乱距離に比べて十分に長く、1, 15, 38) 階級するステッピーでの電子散乱の影響が無視できるので、Landauerの式(2)が適用できた。そのため冷却などでこれらの距離を伸ばされ、さらにフィルム間隔を狭めて互いの距離を近づけた場合のLandauer-Büttikerの式が適用できるようになり、また、多数のステッピー間で多重散乱を伴う電荷電子の伝導や位相相関を含む電気伝導的研究が可能となる。12) 14) ステップの電子輸送機構の統一的解釈のためには今後さらにこの表面電流の現象の研究が進められなければならない。そして、最近急激に微細化が進むテクノロジー表面第一層の制御を要求するレベルまで達したとき、ステップはもはや排除すべき欠陥ではなく原子スケールの回路素子として利用できるかもしれない。

本稿では、マイクロ4端子プローブおよび独立駆動4探針走査形トンネル顕微鏡といわれる新しい実験手法が、表面第一層の電気伝導測定に極めて有効である一例を示した。したがって開発は図面外でも現在進められ、表面実に限らず、ナノチャプおよびナノワイヤーといった個々のミクロな物質の電気伝導測定にも用いられている。一方、最近金屬探針の先にカーボンナノチューブを取り付けたプローブが開発され、我々は極低温型に改造した4探針走査形トンネル顕微鏡システムと組み合わせることでグリーン間数の直接観測に挑戦している。29) 30) このように本稿で紹介した新技術はこれからの発展を続け、さらにその応用範囲も広がり、今後のナノサイエンス・ナノテクノロジー研究に不可欠な測定ツールになるのは間違いいない。

塚田直教授、名取公平教授、長谷川吉雄助教授、Han Woong Yeom助教授、Wolf-Dieter Schneider教授、小林佳雄教授、笠井秀明教授、西西希博士にはご指摘を賜りとても感謝いたします。守宮春穂博士、劉慶華博士、谷川浩洋博士、上野幹司、平民徹氏、金川泰氏、神谷敬之氏、山崎詩朗氏、吉本真也氏、坂本真知氏には、研究全般にわたって補助を賜り感謝いたしております。本研究は科学研究費補助金の援助を受けて行われました。

参考文献

1) 長谷川健司「シリコン表面層構造の現象—2次元および1次元金属—」日本物理学会誌54(1998) 347。
31) http://www.capres.com/
38) 非線型放電長は光電子分光と表面電気伝導の結果から見積もられた。これは、異なるプラズマの電極間で干渉があった場合にステップ電流特性の変化を説明する。実際に、Si(111) 負電荷面のスキャナ上の 2×2、3×3、5×5 の相関を光電子分光測定した結果、図 2 と同様になっということが確認された。

著者紹介

松田 優氏：専門は物性物理と物理化学現在は固体表面上で分光解析、金属な薄膜表面での構造とその形状分析を用いた電気伝導測定を行っている。
保原 龍氏：ナノスケール電子顕微鏡の開発とその応用が得意で、2005年の物理チャレンジ賞を受賞した。
長谷川善司氏：専門は、表面物理実験、表面電気伝導観察の分野で多くの発表を出し、2006年の物理チャレンジ賞を受賞した。その商い、貴重な体験をした（2006年2月14日原稿受付）

Surface Free-Electron Crossing a Single Atomic Step
Iwao Matsuda, Rei Hobara and Shuji Hasegawa

Abstract: We have succeeded in measuring electrical conductance across a single atomic step through a monatomic-layer of free-electron-like metal on a crystal surface, using three independent methods, which yielded the consistent values. The first method was the analysis of electron standing waves near step edges observed by scanning tunneling spectroscopy, combined with the Landauer formula for 2-D conductors. The other two methods were direct surface transport measurements with monolithic microscopic four-point probes and four-tip scanning tunneling microscope probes, which have been developed by us. Details of the electron transport across an atomic step and the conductance measurement procedures are described.