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Abstract
Several examples are known in which massive arrays of metal atomic chains are formed on
semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this
review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are
introduced and discussed with regard to the physical properties determined by experimental
data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy
(ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi
surfaces and parabolic band dispersion along the chains. All of them are known from STM and
ARPES to exhibit metal–insulator transitions by cooling and charge-density-wave formation
due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the
metal–insulator transition only on the less-defective surfaces (Si(553)–Au and Si(111)–In), but
not on a more-defective surface (Si(557)–Au). The latter shows an insulating character over the
whole temperature range. Compared with the electronic structure (Fermi surfaces and band
dispersions), the transport property is more sensitive to the defects. With an increase in defect
density, the conductivity only along the metal atomic chains was significantly reduced, showing
that atomic-scale point defects decisively interrupt the electrical transport along the atomic
chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

1. Introduction

One-dimensional structures, in which electrons are confined to
move only along a particular direction, are realized as quantum
wires, atomic/molecular chains, nanorods, nanotubes, edge
states and highly anisotropic organic/inorganic crystals. Most
of them are, however, not strictly one-dimensional, but ‘quasi-
one-dimensional’ because electrons can hop to the adjacent
chains/wires and/or their widths are not thin enough. Metallic
atom chains aligned on surfaces of semiconductor crystals
are an example, providing suitable playgrounds for exploring
the physics of atomic-scale quasi-one-dimensional metallic
systems.

Why are the one-dimensional systems interesting? In
general, one-dimensional systems are more easily treated
in theoretical calculations than higher dimensions. It is
known that analytical solutions, by taking into account strong
electron–electron correlations, are obtained only for one-
dimensional systems. The theory of a Tomonaga–Luttinger
(TL) liquid is an example [1]. Another interesting point is the

1 http://www-surface.phys.s.u-tokyo.ac.jp

peculiar electronic states in one-dimensional systems as shown
in figure 1. Three-dimensional systems have a density of states
(DOS, left column) varying smoothly with energy, while the
DOS in lower dimensions changes rapidly as a function of
energy. In particular, one-dimensional systems have van Hove
singularities with diverging DOS at band edges, which leads to
exotic physical properties. About the band dispersion (center
column) and Fermi surface (right column), they are isotropic
for two and three dimensions, while one-dimensional systems
have very anisotropic characters which results in anisotropic
transport properties, for example. The Fermi surfaces in one
dimension have features suitable for Fermi surface nesting,
which induces various phase transitions due to the resulting
Fermi surface instability. Fermi surface nesting means large
segments of the Fermi surface can be connected to another
large segment of another Fermi surface via the reciprocal
lattice vector. When the Fermi surface has segments tending
to be straight ‘lines’, the nesting condition is well fulfilled.
This condition corresponds to a divergence in the response
function, which, in turn, means instability of the system with
any perturbations, leading to a transition to a more stable phase.
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Figure 1. Schematic illustrations of the density of states (left
column), band dispersion (center column) and Fermi surfaces (right
column) of (a) three-dimensional, (b) two-dimensional,
(c) one-dimensional and (d) zero-dimensional free-electron systems.

One-dimensional metallic systems are intrinsically un-
stable due to large fluctuations and the above-mentioned
divergent feature of the Lindhard response function at a
wavenumber 2kF (where kF is the Fermi wavenumber). Due
to this electronic instability combined with the electron–lattice
interaction, the lattice is periodically distorted and an energy
gap opens at the Fermi level. Thus periodic modulations in
the electron density and lattice distortion are know as charge-
density waves (CDW), resulting in an insulating phase at lower
temperature [2]. The insulating character of lower-dimensional
systems at low temperature is not only due to the CDW
formation, but also by carrier localization due to the strong
interference effect.

The most popular phenomenon in one dimension would
be the conductance quantization. When carriers flow through
a one-dimensional wire in a ballistic way without carrier
scattering therein, the conductance is quantized in units of
2e2/h(= 1/12 900 �−1) [3]. This quantization unit is a
universal constant, independent of the material, which is the
most striking feature of one-dimensional systems. In the
case of ballistic transport in two and three dimensions, the
conductance units depend on the Fermi wavenumber kF which
is material-dependent [4].

A theory predicts that, since the scattering angle of
a carrier in one dimension is 0◦ (forward scattering) or
180◦ (backward scattering) only, the scattering probability
is very much reduced, resulting in the enhancement of
carrier mobility compared with that in higher dimensions [5].
Accordingly, there are proposals of high-mobility transistors
using nanowires. In real one-dimensional systems, however,
defects are much more fatal in interrupting the carrier transport
than in higher dimensions. This lowers the carrier mobility
very much in many one-dimensional systems. Therefore, the
present paper discusses the influence of defects in quasi-one-
dimensional metallic systems.

In strict one-dimensional systems, electron–electron
interaction is essentially important and therefore the one-
particle approximation is not applicable. Electrons in one
dimension cannot avoid each other nor pass by. The overlap
of the electron wavefunction is inevitably maximized at the
collision. As a result, the one-particle approximation (Fermi-
liquid picture), in which the influence of other electrons is put
into the effective potential and one electron is moving therein,
fails. Therefore, we need a picture of a TL liquid in which
many electrons are always excited collectively. The feature
of a TL liquid is confirmed in photoemission spectra and the
temperature dependence of electrical conductivity of carbon
nanotubes and semiconductor quantum wires [6, 7]. There is
no confirmation of a TL liquid, however, for atomic chains on
crystal surfaces. Real systems have many other factors such
as inter-chain interaction, electron–phonon interaction, CDW
formation and various defects, which prevent the systems
going into the TL state.

Since magnetic atoms in low-dimensional systems have
fewer neighbors, their magnetic moments can become larger
than in three dimensions. Also, since the system is intrinsically
anisotropic in one dimension, the magnetic anisotropic energy
would be larger. In fact, it is shown that magnetic atoms
in atomic chains aligned at step edges on a crystal surface
have a large magnetic moment [8]. Furthermore, because the
screening effect by surrounding carriers is basically weaker
in lower dimensions, the Kondo effect and RKKY interaction
can extend to longer distances and their features would be
enhanced. This would lead to an expectation of ‘stronger’
diluted magnetic systems in lower-dimensional systems.

Because of many aspects described above, (quasi-)one-
dimensional metallic systems are expected to provide much
interesting physics. One of the methods for fabricating one-
dimensional electronic systems with good controllability is
to one-dimensionally confine electrons of a two-dimensional
electron gas (2DEG) with an electric field by gate electrodes
at the semiconductor interfaces. In the present paper,
however, atomic-chain arrays (surface superstructures) formed
on semiconductor crystals are introduced to realize quasi-one-
dimensional metallic systems. Since the electronic states of
such surface superstructures are located within the bandgap of
the substrate bulk, the atomic-chain arrays are electronically
decoupled from the substrate. Therefore, the carriers in the
surface states cannot easily leak into the bulk states of the
substrate, and can flow along the surface for a long distance.
Of course, the carriers are scattered and leak into the bulk

2



J. Phys.: Condens. Matter 22 (2010) 084026 S Hasegawa

Figure 2. Massive arrays of metal atomic chains on silicon crystal surfaces, formed by depositing one (or less than one) monolayer of metals.
(a), (b) Au atomic chains on vicinal Si surfaces (Si(557)–Au, Si(553)–Au) [9]. (c) Indium atomic chains on a flat Si(111) surface (Si(111)
4 × 1-In surface superstructure) (Si(111)–In) [10].

Figure 3. Scanning tunneling microscopy images of the respective chain structures shown in figure 2. (a) Si(557)–Au, (b) Si(553)–Au and (c)
Si(111)–In [9, 11, 12].

states if inelastic scattering by defects and phonons occurs,
accompanying a large change of energy. So the surface
transport property is changed sensitively by surface phase
transitions and minute amounts of adatoms and defects, which
provide a playground for exploring the rich physics of low-
dimensional and nanoscale systems.

First, the atomic and electronic structures of surface
systems dealt with in the present paper are introduced in
section 2. Then phase transitions clarified so far on the surfaces
are described in section 3. Finally, the electrical transport
properties measured with surface-sensitive techniques are
discussed, by comparing systems with different densities of
defects in section 4.

2. Surface quasi-one-dimensional metallic systems

Figure 2 shows examples of surface superstructures with
monolayer-metal atoms adsorbed on Si crystals, exhibiting

quasi-one-dimensional metallic states. (a) and (b) are 0.2
monolayer Au atoms adsorbed on vicinal surfaces of Si, while
(c) is single-monolayer In atoms adsorbed on an Si(111) flat
surface. All of them show atomic-chain structures in which
metal atoms are aligned along particular crystal orientations.
As described below, the systems are metallic only along the
atomic chains. Their STM images are shown in figure 3,
revealing periodically aligned stripes which consist of the
metal atom chains. Their periodicities are 1.9 nm, 1.5 nm
and 1.3 nm, respectively. One can notice point defects which
are irregularly sitting on the stripes. The defects are observed
as bright protrusions on the Si(557)–Au surface, while they
are dark depletions on Si(553)–Au. One find few defects
on the Si(111)–In surface. These defects are not avoidable
even by optimizing the sample preparation conditions, so that
the systems look stable thermodynamically by including the
defects. As described in section 4, the difference in defect
density decisively affects the transport properties.
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Figure 4. Fermi surfaces (upper panel) and band dispersion diagrams (lower panel) of the respective chain structures shown in figure 2. These
are the results of angle-resolved photoemission spectroscopy: (a) Si(557)–Au, (b) Si(553)–Au and (c) Si(111)–In [9, 13–15].

Figure 4 shows the Fermi surfaces (upper panels) and band
dispersion diagrams (lower panels) of these three surfaces.
These were obtained by ARPES measurements. The Fermi
surface of Si(557)–Au is straight lines (Fermi lines), as
illustrated in figure 1(c), meaning an ideal one-dimensional
metal [9]. Si(553)–Au shows slightly wavy Fermi lines,
indicating some inter-chain interaction [13]. Si(111)–In has
more wavy Fermi lines, meaning a larger probability of
electrons hopping to the adjacent In atomic chains [14, 15]. All
of these surfaces have Fermi surfaces having one-dimensional
nature, exhibiting the Fermi surface nesting more or less and
phase transitions thereby, as shown in the next section.

The band dispersion along the metal atomic chains is
parabolic for all surfaces, meaning nearly-free-electron-like
states only along the atomic chains. These bands do not
show significant dispersion in the direction perpendicular to the
chains. These features of electronic states mean that quasi-one-
dimensional metallic systems are realized on semiconductor
substrates. Every surface has multiple parabolic bands,
which originate for different reasons, such as different atomic
bondings and spin–orbit interaction. In particular the two
proximate bands of the Si(557)–Au surface were first proposed
to be spinon–holon bands which are characteristic of a TL
liquid [16]. Later, however, it turned out that they are spin-split
bands due to spin–orbit interaction [17]. All of them shown
here are Fermi-liquid systems.

3. Surface phase transitions

It is shown by Yeom et al that these surfaces exhibit
phase transitions due to Fermi surface nesting [18–21].

Figure 5(c) shows STM images of Si(557)–Au surfaces at room
temperature and low temperature [18]. The atomic chains
indicated by arrows show a change that the periodicity in
the brightness modulation is doubled at 78 K compared to
300 K. The periodicity doubling corresponds to the Fermi
lines in figure 4(a) which bisect the Brillouin zone. Similar
double-periodicity modulations along the chains are also
observed on Si(111)–In at low temperature, as shown in
figure 5(e) [20]. This also corresponds to the m2 and m3
bands in figure 4(c) which approximately bisect the Brillouin
zone. Figure 5(d) shows the temperature dependence of the
low-energy electron diffraction (LEED) pattern taken from
the Si(553)–Au surface [19]. Half-order streaks and one-
third streaks (indicated by arrows) appear at low temperatures,
which indicate structural modulation of double and triple
periodicities along the atomic chains. These correspond
to the proximate Fermi lines bisecting the Brillouin zone
and the Fermi lines located at 1/3 of the Brillouin zone,
respectively, in figure 4(b). In other words, the phase
transitions shown here are changes into modulated structures
having the super-periodicities corresponding to Fermi surface
nesting. Therefore, all of them are believed to be CDW phase
transitions.

Figure 5(a) illustrates the band dispersion and atomic
arrangement (a: lattice constant) of a one-dimensional free-
electron system. The band is occupied by electrons up to the
Fermi energy (EF) and the Fermi wavenumber (kF). In this
example, kF is exactly half of the zone boundary k = π/a.
The electron density is homogeneous along the atomic chain at
higher temperature. Once this chain is cooled down, however,
an energy gap opens at EF and a new zone boundary is formed
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Figure 5. Phase transitions found on the respective chain structures shown in figure 2. (a), (b) Schematics of band dispersion and atomic
arrangement of a one-dimensional metal in the metallic phase at higher temperature and in the charge-density-wave phase at lower
temperature, respectively. (c) STM images of the Si(557)–Au surface at RT and 78 K [18]. (d) LEED patterns of the Si(553)–Au surface at RT
and lower temperatures [19]. (e), (f) STM images [20] and photoemission spectra [21] of the Si(111)–In surface at RT and 70 K.

at k = kF and the size of the Brillouin zone becomes half, as
shown in figure 5(b). This is nothing other than an insulator.
The atomic positions slightly shift as shown in figure 5(b) to
make the periodicity of the lattice double and to modulate the
electron density with the same periodicity. The electron-rich
part and the electron-deficit part are alternately arranged with
the double periodicity. This is a CDW state, and this phase
transition is called the Peierls transition, or CDW transition
in general. The brightness modulations observed in the STM
images of figures 5(c) and (e) are the spatial distribution
of electron density along the atomic chains. Figures 5(a)
and (b) illustrate an example of the Fermi surface bisecting
the Brillouin zone. When the Fermi surface is located at
1/3 of the Brillouin zone, the lattice distortion and charge-
density modulation have the triple periodicity, and the size of
the Brillouin zone is reduced to be 1/3.

Figure 5(f) shows photoemission spectra taken from the
Si(111)–In surface at room temperature and 70 K [21]. It
shows a metallic edge (Fermi edge) at room temperature, while
the edge shifts away from EF at 70 K. This means an energy
gap opening at EF and the system becomes an insulator as

shown in figure 5(b). Si(557)–Au as well as Si(553)–Au
surfaces shows similar changes in photoemission spectra by
cooling. Thus, all of them exhibit metal–insulator transitions
due to the Peierls transition which is characteristic of quasi-
one-dimensional metals.

4. Surface electronic transport

Figure 6 shows electrical resistance (and conductance) of these
surfaces measured as a function of temperature. The resistance
was measured with microscopic four-point probes having a
probe spacing around 10 μm [23]. Because of the small
probe spacing, the measurements are very surface-sensitive.
As shown in figures 6(b) and (c), Si(553)–Au and Si(111)–In
retain low resistances during cooling from room temperature,
while they show drastic increases in resistance below about
130 K [22, 23]. This exactly corresponds to the metal–
insulator transitions due to Peierls instability, as described
in the previous section. Since the Si bulk crystal shows a
completely different temperature dependence of resistance, the
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Figure 6. Temperature dependences of the resistance (and sheet
conductivity) of the respective chain structures shown in figure 2
[22, 23].

resistances measured in figures 6(b) and (c) are those of the
surface states of the massive array of metal chains.

Interestingly, however, Si(557)–Au shows a quite different
temperature dependence, as shown in figure 6(a). The
resistance monotonically increases with cooling from room
temperature. This result means that the surface is insulating,
even at room temperature, and shows no phase transition at
all. This, however, contradicts the ARPES results in figure 4
showing a metallic Fermi surface at room temperature and a
metal–insulator transition below room temperature. Why does
the transport property of Si(557)–Au contradict the electronic
structure?

When, in four-point probe resistance measurements, the
four probes are arranged in a square on the sample surface, as
shown in the inset of figure 7, anisotropy in conductance can be

Figure 7. The sheet conductivity along the metallic chains (σ‖) and
that in the perpendicular direction (σ⊥), measured at RT by the
square-four-point probe method for the Si(111)–In surface on
exposure to oxygen gas [26].

Table 1. The experimental values at RT and calculated values of the
sheet conductivity along the metallic chains (σ‖), those in the
perpendicular direction (σ⊥), and their ratios (σ‖/σ⊥), for the
respective chain structures shown in figure 2. The conductivities
were calculated from the Fermi surface and band dispersion
(figure 4) by using the Boltzmann equation (equation (1)).
Inter-chain interaction estimated by the shape of Fermi surfaces, the
average lengths of chain segments divided by the point defects on the
chains and the temperature dependence of the electrical conductivity
of the respective surfaces are also summarized [25].

Si(557)–Au Si(553)–Au Si(111)–In

Exp. Cal. Exp. Cal. Exp. Cal.

σ‖ (μS/�) 10 200 82 600 710 240
σ⊥ (μS/�) 3.5 0.26 30 6.4 13 13
Anisotropy (σ‖/σ⊥) 2.9 770 2.7 94 54 19
Inter-chain
interaction (shape
of Fermi surface)

Weak Intermediate Strong

Segment length (nm) ∼5 ∼10 ∼100
Temp.-dep.
conductivity

Insulating M–I transition M–I transition

measured [24]. By this ‘square four-point probe’ method, the
sheet conductivity along the metal chains (σ‖) and that in the
perpendicular direction (σ⊥) can be measured separately [24].
The results for the three surfaces are summarized in table 1
[25].

Furthermore, since the Fermi surface and band dispersion
near the Fermi level are know as shown in figure 4, the
conductivities, σ‖ and σ⊥, can be calculated by using the
following equation which is derived from the Boltzmann
equation. The conductivities calculated from the Fermi surface
and band dispersion are also included in table 1:

σi j = e2τ

2π2h̄

∫
FS

viv j

|v| dk, (1)

where the group velocity vi in the i direction (i =‖,⊥) is
derived from the band dispersion E(�k) by vi = 1/h̄ · ∂ E/∂ki .
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The v‖ and v⊥ are the group velocity along the metal chains
and that in the perpendicular direction, respectively. The
diagonal components of the conductivity tensor σi j are σ‖
and σ⊥. The integral of equation (1) is performed on the
Fermi surface (FS). τ is the carrier relaxation time, which
was assumed to be independent of direction. The values of
τ were derived experimentally from the peak width in the
photoemission spectra.

Straight Fermi lines in Si(557)–Au as shown in figure 4(a)
mean a very small value of v⊥, resulting in a small value
of σ⊥, while it has a very large value of σ‖. This high
anisotropy is natural for a quasi-one-dimensional system. By
comparing the calculated values of σ‖ and σ⊥ (and its ratio
σ‖/σ⊥, anisotropy) with the directly measured values, one can
find some interesting features. As for the Si(111)–In surface,
the calculated and measured values of the ratio σ‖/σ⊥ are
roughly of the same order, while the measured values of the
ratio σ‖/σ⊥ from Si(557)–Au and Si(553)–Au surfaces are
lower than those of the calculated values by two orders of
magnitude. Judging from the degree of straightness of the
Fermi lines in figure 4, Si(557)–Au should have the highest
value of anisotropy in conductivity (ratio σ‖/σ⊥) and Si(111)–
In should have the lowest anisotropy in conductivity. The
tendency in the measured values is, however, opposite. This is
because the measured values of σ‖ in Si(557)–Au and Si(553)–
Au are lower than the calculated values by more than one
order of magnitude. In particular, the discrepancy between the
measured and calculated values is very large for Si(557)–Au.
What is the reason for this discrepancy?

One speculation for it is the point defects observed in
the STM images of figure 3: the defects are assumed to
cut the atomic chains into short segments. Since ARPES
clearly reveals metallic bands for all the three surfaces, the
segments remain metallic, though the length is shortened. The
mean lengths of the segments between two point defects were
measured from many STM images of the respective surfaces,
which results are summarized in table 1. The Si(557)–Au
surface has the highest density of defects, resulting in a short
mean length of segments, about 5 nm, while the Si(111)–In
surface is much less defective, having segments as long as
about 100 nm.

By considering the defect density together with the
temperature dependence and anisotropy in conductivity, the
point defects are considered to hide the intrinsic transport
property. Since the electrical conduction occurs mainly along
the metallic chains in quasi-one-dimensional metallic systems,
the transport is seriously disturbed just by point defects on the
chains. This results in the reduction of the measured σ‖. The
carriers need an activation energy to overcome the defects and
flow through them or to hop into the adjacent metal chains
by avoiding the defects. When this kind of activation limits
the transport, the temperature dependence of conductivity has
an insulating character even though the segments between the
defects are metallic. This scenario can explain the findings
that Si(557)–Au has an insulating temperature dependence in
transport and the measured value of σ‖ is much lower than the
values expected from the Fermi surface. Since, on the other
hand, Si(553)–Au and Si(111)–In surfaces have much lower

densities of point defects, the intrinsic nature of the atomic
chains is revealed in the transport property.

In order to confirm the speculation mentioned above,
another experiment was conducted in which the least defective
Si(111)–In surface was exposed to oxygen gas to introduce
defects in a controlled manner, and the conductivities of σ‖
and σ⊥ were measured in situ with the square four-point probe
method as a function of the oxygen dose. The result is shown
in figure 7 [26]. STM images (not shown here) showed an
increase in the density of point defects with oxygen dosing.
The σ‖ drastically decreased with oxygen dosing, while σ⊥
remained almost constant. Eventually, the conductivities
in both directions became equal to each other, meaning an
isotropic surface. This result clearly shows that the point
defects interrupt the electrical conduction along the metal
atomic chains only. In other words, the transport on the pristine
Si(111)–In surface is really one dimensional.

5. Summary

Based on the experimental results of three examples of quasi-
one-dimensional metallic surfaces, Si(557)–Au, Si(553)–
Au and Si(111)–In, we have discussed the metal–insulator
transitions due to Peierls instability, together with the
temperature dependence and anisotropy in surface electrical
conductivity. As described in textbooks on solid state physics,
the Fermi surface nesting corresponded to the periodicity
of charge-density waves and the electronic state changed
into insulating by the phase transition. The metal–insulator
transitions were observed in transport with less-defective
surfaces, Si(553)–Au and Si(111)–In only, while Si(557)–
Au having a higher density of defects did not exhibit a
metal–insulator transition, but an insulating nature over the
whole temperature range. We have also compared the
directly measured surface conductivities with those expected
from the Fermi surfaces and band dispersions. With the
increase in defect density, the conductivity only along the
metal atomic chains was significantly reduced. In this way,
it is shown experimentally that atomic-scale point defects
decisively interrupt the electrical transport along the atomic
chains and hide the intrinsic property of transport.
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