究極のナノマテリアル—表面超構造—
Ultimate Nanomaterials — Surface Superstructures —

東京大学
長谷川修司
Shuji Hasegawa

「表面超構造」とは

「結晶」と聞いてすぐに思い浮かぶのは雪の結晶であろう。これは、多数の水分子が凝集するとき、隣の水分子どうしが一定の角度で結合して（水素結合）、規則的に並んだためにできている六角形に結晶が成長するのである。このように結晶とは、原子又は分子がお互いに決まった方法で結合して規則的に多数並んでできた物質である。ダイヤモンドは炭素原子が規則的に並んで隣の炭素原子と手と手を取り合って結合している（共有結合）。

そのような結晶を割って、新しい表面を出すことを想像してみる。結晶を割るには原子どうしの結合を切断する必要があるので、エネルギーが必要だ。だから、表面ができるとエネルギーが始まる不安定な状態になる。結晶の表面層の原子たちには、結合すべき相手の原子が片側にはないので「結合の手」が余ってしまう。この余った手「ダンジングボンド（Dangling Bond）」がたくさんあると不安定なので、表面の原子たちは自ら並び替えを起こして、このダンジングボンドを数えるべく少なくなる。その並び替えは主に航空に起こるのではないか、これでも規則正しく起こるので、その結果、表面の原子たちは、きちんととした規則性をもって整然と並ぶことになる。その規則性は結晶内部とは異なる。この表面だけに現れる特殊な原子配列が「表面超構造」と呼ばれる。

2 表面超構造の代表例—Si(111)-7×7—

最も有名な表面超構造は多分、シリコン（Si）結晶表面に現れる「7×7」構造であろう。その原子配列の解明に20年あまりかかった記念碑的な表面超構造といえる。Si結晶を割ると（111）結晶面が出る。そこまではダンジングボンドの数の多い不安定な状態になっているが、多少の熱エネルギーを与えると最安定状態の「7×7」表面超構造になる、図1(a)の模型図でみられる菱形が単位になり、図1(b)の顕微鏡写真でみられるように結晶表面全体を覆う。この菱形の四気の長さ（2.69nm）がSi結晶内部の格子の間隔の7倍の長さになっているので、「7×7」表面超構造と呼ばれる。菱形の頂点にはSi原子が抜けている「原子空孔」ができており、これが顕微鏡写真では黒い穴として見える（Corner Hole）。菱形の内部には12個の難点が見えるが、これは最上層に載った12個のSi原子である（Adatom）。このAdatomが上に載って下層のSi原子と結合することによって、その原子層のダンジングボンドをなくしているので、結晶を割った直後でできる不安定な状態と比べるとダンジングボンドの数が1/3程度に減少している。図1(b)の顕微鏡像は1986年のノーベル物理学賞にあたるトーネル顕微鏡（Scanning Tunneling Microscopy：STM）で撮ったものであり、一個一個のAdatomがはっきり見える。しかし、図1(a)に示した複雑な原子配列はSTMでは解明できず、東京工業大学の髙柳邦夫先生

* 2013年9月3日受付

図1 (a) Si(111)-7×7 表面超構造の模式図（上：上面図、下：断面図）、(b) その STM 像
3 表面超構造からナノマテリアルへ

表面超構造の多様性は、結晶表面上に数多く発現する異常原子を吸着させることでますます広がる。表面だけにできる1,2原子層厚さの「表面化学物質」とも呼ばれる表面超構造の観点で分析する。上述のSi結晶の表面には、数個のインジウム(In)原子を吸着させたときにできる表面超構造を図2に示す。Si原子3個の格子に原子1個が吸着した場合（In原子の吸着量が「1/3 原子層」と定義する）。図2(b)に示すようにIn原子が規則的に吸着する。In原子の間隔がSi結晶格子の周期の2分の一に近いので、「3×3」表面超構造と呼ばれる。1原子層のIn原子を用いSi結晶表面に吸着させると、今度は図2(b)に示すようにIn原子が4列に並んでストライプ構造となる。「4×1」表面超構造と呼ばれる。この原子配列から想像できるように、In原子の方向にのみ電気泳動が見やすい「一次元金属」状態となっている。さらにIn原子の量を増やして2原子層まで吸着させると、図2(c)に示すように「7×7」表面超構造となる。これら2原子層厚さの極薄二次元金属となる。

このような同じ結晶基板と吸着物の組み合わせでも、In原子の量によって原子配列がまったく異なる表面超構造が形成される。さらに、1,2原子層厚さの「ナノマテリアル」といえる。その性質も構造に応じて著しく異なる。図3は、これらの電気抵抗を測定した結果である。電流密度が表面超構造に応じて何枚も違うことに驚く。さらに、試料を冷却すると「7×3」表面超構造以外はすべて抵抗が上昇して絶縁体化する。4×1で150 K付近で一次元金属特有の金属絶縁相転移が起こる。しかし、「7×3」だけが冷却によって抵抗が減少して金属的な振る舞いを示す。この表面超構造をさらに極低温まで冷却すると図3(b)に示すように28 K付近で電気抵抗がゼロになる超伝導状態へと転移する。2原子層厚さの極薄二次元超伝導体となっている。

Si結晶表面上に周期律表の中のさまざまな元素の原子を1原子層程度吸着させると、素子300種類以上の表面超構造ができることが知られており、原子層の薄さの多様なナノマテリアル群といえる。最近、低温や低温でなく、対称性の破れを伴う新しい相が発見され研究がますます盛んになっている。結晶表面は物質と真空との境界なので非対称な状態となっており、物理科学という空間反転対称性が破れている状態である。そのために、非対称特性を示す表面超構造でも導電性の方向に依存して表面電荷のエネルギー準位が異なる。これによって表面超構造はスピントロニクスのデバイスに応用できるのではないかと期待されている。

参 考 文 献