特別 インタビュー

東京大学・長谷川修司教授(日本物理学会長) 量子力学が人間の本質に切りこんでいく

Newton (以下、N):量子力学が現代 社会や科学にもたらしたものの中で, とくに何が重要だと思いますか?

長谷川教授:私は「原子力」と「半 導体」ではないかと思います。原子 力は、発電と原子爆弾という正と負 の側面がありますが、どちらも原子 のしくみを解明した量子力学なしで は実現できなかったものです。半導 体も、その性質を量子力学なしでは 理解できません。原子力と半導体の 二つを考えただけでも、量子力学が いかに社会に大きな影響をおよぼし たかがわかると思います。

科学への影響に関していえば、最 近は化学や生物学でも、量子力学と の融合が見られます。現代物理学は 量子力学と相対性理論が土台になっ ていますが、なかでも量子力学の波 及効果は大きいと思います。

| N:量子力学のこれまでの100年をふ りかえって. どのように感じますか?

長谷川教授:量子力学が誕生して最 初の30年~40年は、理論体系をつく っていく基礎固めの時代だったと思 います。1940年代にトランジスタが 発明されて、量子力学を応用する時 代に入りました。

そして、20年ほど前から、量子力 学をさらに深く利用する。新しい時 代に入ったように感じます。量子も つれを利用する量子コンピューター は、その一例です。私の専門である 物性物理学の分野でいえば、「トポロ ジカル絶縁体」という、基本的に絶 縁体だけれど、表面だけ電気をよく 通すという特殊な物質の研究が進ん でいます(右ページの図)。これは量 子力学の新しい知見を応用してつく られた物質です。

ように貢献してきましたか? 長谷川教授:量子力学の100年の歴

N:日本は量子力学の発展に、どの

史をふりかえったときに、日本人科 学者の貢献を忘れてはならないと思 います。東アジアの片隅にある日本 がなぜこんなに発展できたのかとい えば、日本の科学コミュニティーで 量子力学の研究がさかんだったこと の影響が確実にあると思います。

日本人研究者は100年前から、原 子物理学や量子力学の分野で欧米の 研究者と渡り合ってきました。量子 力学登場以前のいわゆる古典物理学 の分野では、日本は正直遅れていま したが、量子力学の発展にはすごく 貢献しています。

スマホの充電頻度が 劇的に下がる可能性

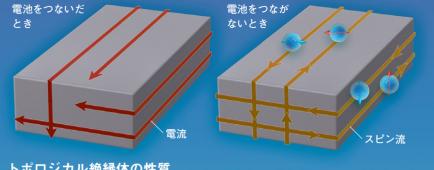
N:ご自身の研究では、量子力学を どのように利用していますか?

長谷川教授:私は物性物理学の実験 家です。たとえば、結晶の中の電子 がどうふるまっているかを調べると きなどに量子力学を使います。

先ほども紹介したトポロジカル絶 縁体という特殊な物質を半導体とし て利用する研究が、私たちの分野で は今さかんに行われています。トポ ロジカル絶縁体を使えば、非常に電 力消費が少ない半導体が実現できる と考えられています。こういった特 殊な半導体のふるまいは、電子の波 の性質が関係しているので、まさに 量子力学の効果がそのままあらわれ ているといえます。

10年後、20年後にはそれらの物質 を利用した省電力の半導体が実用化 されて、たくさん使われていると思 います。そのときには、スマホも1 か月に1回充電すればいい時代にな っているかもしれませんね。

IN:現在の量子力学が抱えている課 題は何ですか?


長谷川教授:量子力学の解釈に関す る問題は、まだ解決されていません。 「観測すると波が1点に収縮する」と いう、言い訳めいたことを考えない と実験結果が説明できないという解 釈の問題は、私が40年以上前に大学 の授業で量子力学を学んだころから ずっといわれています。この問題は 人間には解けない永遠の謎かもしれ ないし、解決の糸口もまだみつかっ ていないと思います。

IN:量子力学の不思議さについて、"納 得"していますか?

長谷川教授:どんなに常識的な感覚 とちがっていても、 そういうものな んだと飲みこむしかないですね。私 が大学生のときに量子力学を教えて くれた教授は、「これは宗教の一種 だ」なんてことも言っていましたよ。

N:最近の量子力学の展開について. 注目している動きはありますか?

長谷川教授:私が個人的に興味があ るのは、生物学への展開ですね。た とえば脳の中で何がおきているかな どを、量子力学を使って説明しよう とする「量子生物学」という分野が あります。脳の神経細胞ももちろん 原子や分子からできていて、電子を やり取りしながら動いています。そ の点では半導体と同じなので、脳の

トポロジカル絶縁体の性質

【左側】トポロジカル絶縁体に電池をつなぐ(電圧をかける)と、表面だけに電流が流れます。 なお、鉄や銅などの金属は、表面にも内部にも電流が流れます。【右側】トポロジカル絶縁体は、 電池をつながないときに電流は流れませんが、表面に「スピン流」という特殊な流れが生じて います。逆向きのスピンをもつ電子が、同じ数だけ反対方向に流れています。

はたらきも量子力学を使って解明で きる可能性があるというわけです。

私たちは、ある瞬間にパッと何か がひらめいて、アイデアが意識にの ぼってくることがあります。これは 観測によって波が1点に収縮して粒 子になることに相当するのだと主張 している科学者もいます。これは非 常に面白い考え方で、私もそうでは ないかと思います。

量子力学はこれまで半導体やブラ ックホールの謎などを解明してきま した。今後は人間の本質に切りこむ ために量子力学が活躍するのではな いかと考えています。

人の意識の問題が新たな 物理学のきっかけに

IN:量子力学は、今後どのように発 展していくと思いますか?

長谷川教授:量子力学はこれまで大 きく二つの道をたどってきました。一 つは量子力学を使って、自然現象を 解明しようという道です。もう一つ は、量子力学を積極的に利用しよう という道です。今後は、後者の量子 力学の利用がますますさかんになっ

ていくと考えています。近年の量子 コンピューターの発展などは、まさ に後者ですよね。今まで思いもつか なかった新しい利用法が、今後は出 てくると思います。

N:今後、量子力学をこえる新たな 物理学が誕生する可能性について. | どう思いますか?

長谷川教授:100年前に量子力学が 誕生したきっかけは、溶鉱炉の溶け た鉄の温度を知りたいという。ある 意味とても小さな問題でした。当時 の科学では説明できないほころびの 一つから、量子力学が生まれたわけ です。

現在、すでにいくつかのほころび らしきものが存在しています。素粒 子の標準理論では説明できないニュ ートリノの質量の問題などは、その 一つですね。小さなほころびのどれ かが解決することで、物理学は新た な段階にパッと移っていくのだと思 います。ただ、そのきっかけとなる ほころびが何なのかは、わかりませ ん。私は人の意識の問題に、非常に 重大なほころびが秘められているよ うに感じていますね。

長谷川修司 理学専攻教授教授。2023年3月か ら日本物理学会長をつとめる。専 門は物性物理学実験. 表面物理学 大学3年生のときに受けた素粒子 に関する授業。「とらえどころのな い量子の世界におどろきました」。

58 Newton Special